A124498 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} containing k blocks of size 2 (0 <= k <= floor(n/2)).
1, 1, 1, 1, 2, 3, 6, 6, 3, 17, 20, 15, 53, 90, 45, 15, 205, 357, 210, 105, 871, 1484, 1260, 420, 105, 3876, 7380, 6426, 2520, 945, 18820, 39195, 33390, 18900, 4725, 945, 99585, 213180, 202950, 117810, 34650, 10395, 558847, 1242120, 1293435, 734580, 311850
Offset: 0
Examples
T(4,1)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34. Triangle T(n,k) begins: : 1; : 1; : 1, 1; : 2, 3; : 6, 6, 3; : 17, 20, 15; : 53, 90, 45, 15; : 205, 357, 210, 105; : 871, 1484, 1260, 420, 105; : 3876, 7380, 6426, 2520, 945; : 18820, 39195, 33390, 18900, 4725, 945; : 99585, 213180, 202950, 117810, 34650, 10395; : 558847, 1242120, 1293435, 734580, 311850, 62370, 10395;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
G:=exp(exp(z)-1+(t-1)*z^2/2): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form # second Maple program: with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* b(n-i*j, i-1)*`if`(i=2, x^j, 1), j=0..n/i)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015
-
Mathematica
d=Exp[Exp[x]-x^2/2!-1]; f[list_] := Select[list,#>0&]; Map[f, Transpose[Table[Range[0,12]! CoefficientList[Series[ x^(2k)/(k! 2!^k) *d, {x,0,12}], x], {k,0,5}]]]//Flatten (* Geoffrey Critzer, Nov 30 2011 *)
Formula
E.g.f.: exp(exp(z)-1+(t-1)z^2/2).
Generally the e.g.f. for set partitions containing k blocks of size p is: G(z,t) = exp(exp(z)-1+(t-1)z^p/p!) - Geoffrey Critzer, Nov 30 2011
Comments