cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124498 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} containing k blocks of size 2 (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 6, 3, 17, 20, 15, 53, 90, 45, 15, 205, 357, 210, 105, 871, 1484, 1260, 420, 105, 3876, 7380, 6426, 2520, 945, 18820, 39195, 33390, 18900, 4725, 945, 99585, 213180, 202950, 117810, 34650, 10395, 558847, 1242120, 1293435, 734580, 311850
Offset: 0

Views

Author

Emeric Deutsch, Nov 05 2006

Keywords

Comments

Row n contains 1+floor(n/2) terms. Row sums yield the Bell numbers A000110. T(n,0)=A097514(n). Sum(k*T(n,k), k=0..floor(n/2))=A105479(n+1).

Examples

			T(4,1)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34.
Triangle T(n,k) begins:
:      1;
:      1;
:      1,       1;
:      2,       3;
:      6,       6,       3;
:     17,      20,      15;
:     53,      90,      45,     15;
:    205,     357,     210,    105;
:    871,    1484,    1260,    420,    105;
:   3876,    7380,    6426,   2520,    945;
:  18820,   39195,   33390,  18900,   4725,   945;
:  99585,  213180,  202950, 117810,  34650, 10395;
: 558847, 1242120, 1293435, 734580, 311850, 62370, 10395;
		

Crossrefs

T(2n,n) gives A001147.

Programs

  • Maple
    G:=exp(exp(z)-1+(t-1)*z^2/2): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(i=2, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    d=Exp[Exp[x]-x^2/2!-1]; f[list_] := Select[list,#>0&]; Map[f, Transpose[Table[Range[0,12]! CoefficientList[Series[ x^(2k)/(k! 2!^k) *d, {x,0,12}], x], {k,0,5}]]]//Flatten (* Geoffrey Critzer, Nov 30 2011 *)

Formula

E.g.f.: exp(exp(z)-1+(t-1)z^2/2).
Generally the e.g.f. for set partitions containing k blocks of size p is: G(z,t) = exp(exp(z)-1+(t-1)z^p/p!) - Geoffrey Critzer, Nov 30 2011