A124504 Number of partitions of an n-set without blocks of size 3.
1, 1, 2, 4, 11, 32, 113, 422, 1788, 8015, 39435, 204910, 1144377, 6722107, 41877722, 273328660, 1875326627, 13427171644, 100415636519, 780856389454, 6312398830812, 52891894374481, 459022366424253, 4117482357137214, 38140612800271305, 364280428671552453, 3584042687233836274
Offset: 0
Keywords
Examples
a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
G:=exp(exp(x)-1-x^3/6): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x,n),n=0..26); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=3, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015, revised, Jun 24 2022
-
Mathematica
a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 13 2015 *)
-
PARI
x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ Joerg Arndt, Jan 19 2015
Formula
E.g.f.: exp(exp(x)-1-x^3/6).
a(n) = A124503(n,0).