A337059
E.g.f.: 1 / (2 + x^3/6 - exp(x)).
Original entry on oeis.org
1, 1, 3, 12, 67, 461, 3823, 36933, 407963, 5068909, 69982083, 1062784273, 17607354955, 316012688213, 6108011298847, 126490611884013, 2794122884322635, 65578524701197341, 1629676370022564219, 42748628870263418761, 1180373377691425730235
Offset: 0
-
S:= series(1/(2+x^3/6-exp(x)),x,31):
seq(coeff(S,x,i)*i!,i=0..30); # Robert Israel, Aug 28 2020
-
nmax = 20; CoefficientList[Series[1/(2 + x^3/6 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[n_] := a[n] = n (a[n - 1] + (n - 1) a[n - 2]/2) + Sum[Binomial[n, k] a[n - k], {k, 4, n}]; Table[a[n], {n, 0, 20}]
A343664
Number of partitions of an n-set without blocks of size 4.
Original entry on oeis.org
1, 1, 2, 5, 14, 47, 173, 702, 3125, 14910, 76495, 418035, 2418397, 14791597, 95093612, 641094695, 4521228732, 33250447919, 254585084539, 2024995604762, 16702070759557, 142642458681486, 1259387604241013, 11479967000116911, 107910143688962037, 1044735841257587203, 10407104137208385924
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=4, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..26); # Alois P. Heinz, Apr 25 2021
-
nmax = 26; CoefficientList[Series[Exp[Exp[x] - 1 - x^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 4 k]/((n - 4 k)! k! (4!)^k), {k, 0, Floor[n/4]}], {n, 0, 26}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 4, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
A343665
Number of partitions of an n-set without blocks of size 5.
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 197, 835, 3860, 19257, 102997, 586170, 3535645, 22496437, 150454918, 1054235150, 7718958995, 58905868192, 467530598983, 3851775136517, 32881385742460, 290387471713872, 2649226725182823, 24934118754400767, 241809265181914545, 2413608066257526577
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=5, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 5 k]/((n - 5 k)! k! (5!)^k), {k, 0, Floor[n/5]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 5, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343666
Number of partitions of an n-set without blocks of size 6.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 202, 870, 4084, 20727, 112825, 654546, 4026487, 26145511, 178550986, 1278168860, 9564026947, 74615547996, 605593775899, 5103054929621, 44564754448972, 402677613100491, 3759094788129312, 36205919126040190, 359340174509911325, 3670825700549853053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=6, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^6/6!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 6 k]/((n - 6 k)! k! (6!)^k), {k, 0, Floor[n/6]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343667
Number of partitions of an n-set without blocks of size 7.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 876, 4132, 21075, 115375, 673620, 4172413, 27296089, 187891174, 1356343385, 10238632307, 80615222404, 660560758879, 5621465069117, 49594663447612, 452846969975391, 4273130715906123, 41612346388251187, 417668648929556073, 4315893703814296053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343668
Number of partitions of an n-set without blocks of size 8.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21138, 115885, 677745, 4206172, 27577513, 190289713, 1377315050, 10426866782, 82350895629, 677003941219, 5781485704892, 51193839084907, 469251258854001, 4445769329586348, 43475305461354931, 438270620701587657, 4549243731200717053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343669
Number of partitions of an n-set without blocks of size 9.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115965, 678460, 4212497, 27633712, 190795218, 1381942530, 10470109267, 82764226404, 681048663329, 5822029128397, 51610194855972, 473631475252041, 4492967510009533, 43996047374513046, 444151309687221889, 4617189912288741028
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=9, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^9/9!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 9 k]/((n - 9 k)! k! (9!)^k), {k, 0, Floor[n/9]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A124503
Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} (or of any n-set) containing k blocks of size 3 (0<=k<=floor(n/3)).
Original entry on oeis.org
1, 1, 2, 4, 1, 11, 4, 32, 20, 113, 80, 10, 422, 385, 70, 1788, 1792, 560, 8015, 9492, 3360, 280, 39435, 50640, 23100, 2800, 204910, 295020, 147840, 30800, 1144377, 1763300, 1044120, 246400, 15400, 6722107, 11278410, 7241520, 2202200, 200200, 41877722
Offset: 0
T(4,1)=4 because we have 1|234, 134|2, 124|3 and 123|4.
Triangle starts:
1;
1;
2;
4, 1;
11, 4;
32, 20;
113, 80, 10;
422, 385, 70;
...
-
G:=exp(exp(z)-1+(t-1)*z^3/6): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,k),k=0..floor(n/3)) od; # yields sequence in triangular form
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(i=3, x^j, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..15); # Alois P. Heinz, Mar 08 2015
-
nn = 8; k = 3; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 + (y - 1) x^k/k!], {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 26 2012 *)
A328153
Number of set partitions of [n] such that at least one of the block sizes is 3.
Original entry on oeis.org
0, 0, 0, 1, 4, 20, 90, 455, 2352, 13132, 76540, 473660, 3069220, 20922330, 149021600, 1109629885, 8604815520, 69437698160, 581661169640, 5051885815603, 45411759404560, 421977921782270, 4047693372023070, 40034523497947132, 407818256494533984, 4274309903558446900
Offset: 0
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 3):
seq(a(n), n=0..27);
-
b[n_, k_] := b[n, k] = If[n==0, 1, Sum[If[j==k, 0, b[n-j, k] Binomial[n-1, j-1]], {j, 1, n}]];
a[n_] := b[n, 0] - b[n, 3];
a /@ Range[0, 27] (* Jean-François Alcover, May 02 2020, after Maple *)
A361489
Expansion of e.g.f. exp(exp(x) - 1 + x^3/6).
Original entry on oeis.org
1, 1, 2, 6, 19, 72, 313, 1472, 7612, 42679, 255515, 1632710, 11065057, 79065807, 594174922, 4679473130, 38500353667, 330172915164, 2944613004359, 27253908250340, 261328607398332, 2591724561444621, 26545170005412613, 280411070646125638
Offset: 0
Showing 1-10 of 13 results.
Comments