cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124504 Number of partitions of an n-set without blocks of size 3.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 113, 422, 1788, 8015, 39435, 204910, 1144377, 6722107, 41877722, 273328660, 1875326627, 13427171644, 100415636519, 780856389454, 6312398830812, 52891894374481, 459022366424253, 4117482357137214, 38140612800271305, 364280428671552453, 3584042687233836274
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2006

Keywords

Examples

			a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.
		

Crossrefs

Programs

  • Maple
    G:=exp(exp(x)-1-x^3/6): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x,n),n=0..26);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
         `if`(j=3, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015, revised, Jun 24 2022
  • Mathematica
    a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 13 2015 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ Joerg Arndt, Jan 19 2015

Formula

E.g.f.: exp(exp(x)-1-x^3/6).
a(n) = A124503(n,0).

A355144 Number T(n,k) of partitions of [n] having exactly k blocks of size at least three; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 5, 26, 26, 76, 117, 10, 232, 540, 105, 764, 2445, 931, 2620, 11338, 6909, 280, 9496, 53033, 48546, 4900, 35696, 253826, 324753, 64295, 140152, 1235115, 2131855, 691075, 15400, 568504, 6142878, 13792779, 6739876, 400400, 2390480, 31126539, 88890880, 61274213, 7217210
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2022

Keywords

Examples

			T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(6,2) = 10: 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234.
Triangle T(n,k) begins:
       1;
       1;
       2;
       4,       1;
      10,       5;
      26,      26;
      76,     117,      10;
     232,     540,     105;
     764,    2445,     931;
    2620,   11338,    6909,    280;
    9496,   53033,   48546,   4900;
   35696,  253826,  324753,  64295;
  140152, 1235115, 2131855, 691075, 15400;
  ...
		

Crossrefs

Column k=0 gives A000085.
Row sums give A000110.
T(3n,n) gives A025035.

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
         `if`(i>2, x, 1)*binomial(n-1, i-1)*b(n-i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 20 2022
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[If[i > 2, x, 1]*
         Binomial[n - 1, i - 1]*b[n - i], {i, 1, n}]]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 25 2022, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A288785(n).

A124498 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} containing k blocks of size 2 (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 6, 3, 17, 20, 15, 53, 90, 45, 15, 205, 357, 210, 105, 871, 1484, 1260, 420, 105, 3876, 7380, 6426, 2520, 945, 18820, 39195, 33390, 18900, 4725, 945, 99585, 213180, 202950, 117810, 34650, 10395, 558847, 1242120, 1293435, 734580, 311850
Offset: 0

Views

Author

Emeric Deutsch, Nov 05 2006

Keywords

Comments

Row n contains 1+floor(n/2) terms. Row sums yield the Bell numbers A000110. T(n,0)=A097514(n). Sum(k*T(n,k), k=0..floor(n/2))=A105479(n+1).

Examples

			T(4,1)=6 because we have 12|3|4, 13|2|4, 14|2|3, 1|23|4, 1|24|3 and 1|2|34.
Triangle T(n,k) begins:
:      1;
:      1;
:      1,       1;
:      2,       3;
:      6,       6,       3;
:     17,      20,      15;
:     53,      90,      45,     15;
:    205,     357,     210,    105;
:    871,    1484,    1260,    420,    105;
:   3876,    7380,    6426,   2520,    945;
:  18820,   39195,   33390,  18900,   4725,   945;
:  99585,  213180,  202950, 117810,  34650, 10395;
: 558847, 1242120, 1293435, 734580, 311850, 62370, 10395;
		

Crossrefs

T(2n,n) gives A001147.

Programs

  • Maple
    G:=exp(exp(z)-1+(t-1)*z^2/2): Gser:=simplify(series(G,z=0,16)): for n from 0 to 13 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 13 do seq(coeff(P[n],t,k),k=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(i=2, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    d=Exp[Exp[x]-x^2/2!-1]; f[list_] := Select[list,#>0&]; Map[f, Transpose[Table[Range[0,12]! CoefficientList[Series[ x^(2k)/(k! 2!^k) *d, {x,0,12}], x], {k,0,5}]]]//Flatten (* Geoffrey Critzer, Nov 30 2011 *)

Formula

E.g.f.: exp(exp(z)-1+(t-1)z^2/2).
Generally the e.g.f. for set partitions containing k blocks of size p is: G(z,t) = exp(exp(z)-1+(t-1)z^p/p!) - Geoffrey Critzer, Nov 30 2011
Showing 1-3 of 3 results.