cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124503 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} (or of any n-set) containing k blocks of size 3 (0<=k<=floor(n/3)).

Original entry on oeis.org

1, 1, 2, 4, 1, 11, 4, 32, 20, 113, 80, 10, 422, 385, 70, 1788, 1792, 560, 8015, 9492, 3360, 280, 39435, 50640, 23100, 2800, 204910, 295020, 147840, 30800, 1144377, 1763300, 1044120, 246400, 15400, 6722107, 11278410, 7241520, 2202200, 200200, 41877722
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2006

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums yield the Bell numbers (A000110). T(n,0)=A124504(n). Sum(k*T(n,k), k=0..floor(n/3))=A105480(n+1).

Examples

			T(4,1)=4 because we have 1|234, 134|2, 124|3 and 123|4.
Triangle starts:
    1;
    1;
    2;
    4,   1;
   11,   4;
   32,  20;
  113,  80, 10;
  422, 385, 70;
  ...
		

Crossrefs

T(3n,n) gives A025035.

Programs

  • Maple
    G:=exp(exp(z)-1+(t-1)*z^3/6): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,k),k=0..floor(n/3)) od; # yields sequence in triangular form
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(i=3, x^j, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    nn = 8; k = 3; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 + (y - 1) x^k/k!], {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 26 2012 *)

Formula

E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)z^3/6).

A288785 Number of blocks of size >= three in all set partitions of n.

Original entry on oeis.org

1, 5, 26, 137, 750, 4307, 25996, 164825, 1096217, 7633650, 55549664, 421599778, 3331027887, 27349472297, 232967157736, 2055635993935, 18762063976810, 176896220650029, 1720762736285790, 17249873608817569, 178010337967774511, 1889129778601708612
Offset: 3

Views

Author

Alois P. Heinz, Jun 15 2017

Keywords

Examples

			a(4) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
a(5) = 26: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
a(6) = 137: 123456, 12345|6, 12346|5, ..., 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234, ..., 1|256|3|4, 1|2|356|4, 1|2|3|456.
		

Crossrefs

Column k=3 of A283424.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    g:= proc(n, k) option remember; `if`(n g(n, 3):
    seq(a(n), n=3..30);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
         `if`(j>2, p[1], 0)])(b(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=3..30);  # Alois P. Heinz, Jan 06 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]];
    g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k+1] + Binomial[n, k]*b[n - k]];
    a[n_] := g[n, 3];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)

Formula

a(n) = Bell(n+1) - Sum_{j=0..2} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-3} binomial(n,j) * Bell(j).
a(n) = Sum_{k=1..n} k * A355144(n,k). - Alois P. Heinz, Jun 20 2022
E.g.f.: (exp(x) - 1 - x - x^2/2) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jun 24 2022
Showing 1-2 of 2 results.