A343664
Number of partitions of an n-set without blocks of size 4.
Original entry on oeis.org
1, 1, 2, 5, 14, 47, 173, 702, 3125, 14910, 76495, 418035, 2418397, 14791597, 95093612, 641094695, 4521228732, 33250447919, 254585084539, 2024995604762, 16702070759557, 142642458681486, 1259387604241013, 11479967000116911, 107910143688962037, 1044735841257587203, 10407104137208385924
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=4, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..26); # Alois P. Heinz, Apr 25 2021
-
nmax = 26; CoefficientList[Series[Exp[Exp[x] - 1 - x^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 4 k]/((n - 4 k)! k! (4!)^k), {k, 0, Floor[n/4]}], {n, 0, 26}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 4, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
A343665
Number of partitions of an n-set without blocks of size 5.
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 197, 835, 3860, 19257, 102997, 586170, 3535645, 22496437, 150454918, 1054235150, 7718958995, 58905868192, 467530598983, 3851775136517, 32881385742460, 290387471713872, 2649226725182823, 24934118754400767, 241809265181914545, 2413608066257526577
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=5, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 5 k]/((n - 5 k)! k! (5!)^k), {k, 0, Floor[n/5]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 5, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343666
Number of partitions of an n-set without blocks of size 6.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 202, 870, 4084, 20727, 112825, 654546, 4026487, 26145511, 178550986, 1278168860, 9564026947, 74615547996, 605593775899, 5103054929621, 44564754448972, 402677613100491, 3759094788129312, 36205919126040190, 359340174509911325, 3670825700549853053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=6, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^6/6!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 6 k]/((n - 6 k)! k! (6!)^k), {k, 0, Floor[n/6]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343667
Number of partitions of an n-set without blocks of size 7.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 876, 4132, 21075, 115375, 673620, 4172413, 27296089, 187891174, 1356343385, 10238632307, 80615222404, 660560758879, 5621465069117, 49594663447612, 452846969975391, 4273130715906123, 41612346388251187, 417668648929556073, 4315893703814296053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343669
Number of partitions of an n-set without blocks of size 9.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115965, 678460, 4212497, 27633712, 190795218, 1381942530, 10470109267, 82764226404, 681048663329, 5822029128397, 51610194855972, 473631475252041, 4492967510009533, 43996047374513046, 444151309687221889, 4617189912288741028
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=9, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^9/9!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 9 k]/((n - 9 k)! k! (9!)^k), {k, 0, Floor[n/9]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 9, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343791
Number of ordered partitions of an n-set without blocks of size 8.
Original entry on oeis.org
1, 1, 3, 13, 75, 541, 4683, 47293, 545834, 7087243, 102247203, 1622625313, 28091415135, 526854986737, 10641264928479, 230281282588513, 5315605563021465, 130369438065006551, 3385496924633886429, 92800464391224494215, 2677652842774247060805, 81123688691904430522831
Offset: 0
Cf.
A000670,
A032032,
A337058,
A337059,
A343668,
A343787,
A343788,
A343789,
A343790,
A343792,
A343793.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=8, 0, a(n-j)*binomial(n, j)), j=1..n))
end:
seq(a(n), n=0..21); # Alois P. Heinz, Apr 29 2021
-
nmax = 21; CoefficientList[Series[1/(2 + x^8/8! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
A343671
Number of partitions of an n-set without blocks of size 10.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678559, 4213465, 27643007, 190884307, 1382802389, 10478516523, 82847813908, 681895648039, 5830788687491, 51702731250650, 474630475600569, 4503991075480297, 44120379612630694, 445584481578266277, 4634070027874688433
Offset: 0
Cf.
A000110,
A000296,
A027344,
A097514,
A124504,
A343664,
A343665,
A343666,
A343667,
A343668,
A343669.
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Showing 1-7 of 7 results.