cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A343793 Number of ordered partitions of an n-set without blocks of size 10.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 47293, 545835, 7087261, 102247562, 1622632551, 28091567067, 526858335797, 10641342662135, 230283183134017, 5315654473869451, 130370761261559229, 3385534496252337939, 92801582269262225397, 2677687636903407184463, 81124819758167172293305
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=10, 0, a(n-j)*binomial(n, j)), j=1..n))
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Apr 29 2021
  • Mathematica
    nmax = 21; CoefficientList[Series[1/(2 + x^10/10! - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n, k] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: 1 / (2 + x^10/10! - exp(x)).
Showing 1-1 of 1 results.