cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124504 Number of partitions of an n-set without blocks of size 3.

Original entry on oeis.org

1, 1, 2, 4, 11, 32, 113, 422, 1788, 8015, 39435, 204910, 1144377, 6722107, 41877722, 273328660, 1875326627, 13427171644, 100415636519, 780856389454, 6312398830812, 52891894374481, 459022366424253, 4117482357137214, 38140612800271305, 364280428671552453, 3584042687233836274
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2006

Keywords

Examples

			a(3)=4 because if the set is {1,2,3}, then we have 1|2|3, 1|23, 12|3 and 13|2.
		

Crossrefs

Programs

  • Maple
    G:=exp(exp(x)-1-x^3/6): Gser:=series(G,x=0,30): seq(n!*coeff(Gser,x,n),n=0..26);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
         `if`(j=3, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015, revised, Jun 24 2022
  • Mathematica
    a[n_] := SeriesCoefficient[Exp[Exp[x]-1-x^3/6], {x, 0, n}]*n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 13 2015 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace( exp(exp(x)-1-x^3/6) ) ) \\ Joerg Arndt, Jan 19 2015

Formula

E.g.f.: exp(exp(x)-1-x^3/6).
a(n) = A124503(n,0).

A327884 Number T(n,k) of set partitions of [n] such that at least one of the block sizes is k or k=0; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 4, 3, 1, 15, 11, 9, 4, 1, 52, 41, 35, 20, 5, 1, 203, 162, 150, 90, 30, 6, 1, 877, 715, 672, 455, 175, 42, 7, 1, 4140, 3425, 3269, 2352, 1015, 280, 56, 8, 1, 21147, 17722, 17271, 13132, 6237, 1890, 420, 72, 9, 1, 115975, 98253, 97155, 76540, 39480, 12978, 3150, 600, 90, 10, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2019

Keywords

Examples

			T(4,1) = 11: 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,3) = 4: 123|4, 124|3, 134|2, 1|234.
T(4,4) = 1: 1234.
T(5,1) = 41: 1234|5, 1235|4, 123|4|5, 1245|3, 124|3|5, 12|34|5, 125|3|4, 12|35|4, 12|3|45, 12|3|4|5, 1345|2, 134|2|5, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45, 1|23|4|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|345, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Triangle T(n,k) begins:
      1;
      1,     1;
      2,     1,     1;
      5,     4,     3,     1;
     15,    11,     9,     4,    1;
     52,    41,    35,    20,    5,    1;
    203,   162,   150,    90,   30,    6,   1;
    877,   715,   672,   455,  175,   42,   7,  1;
   4140,  3425,  3269,  2352, 1015,  280,  56,  8, 1;
  21147, 17722, 17271, 13132, 6237, 1890, 420, 72, 9, 1;
  ...
		

Crossrefs

Columns k=0-3 give: A000110, A000296(n+1), A327885, A328153.
T(2n,n) gives A276961.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          `if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
        end:
    T:= (n, k)-> b(n, 0)-`if`(k=0, 0, b(n, k)):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j,k] Binomial[ n - 1, j - 1]], {j, 1, n}]];
    T[n_, k_] := b[n, 0] - If[k == 0, 0, b[n, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)

Formula

E.g.f. of column k: exp(exp(x)-1) - [k>0] * exp(exp(x)-1-x^k/k!).
T(n,0) - T(n,1) = A000296(n).

A328155 Number of set partitions of [n] with distinct block sizes and one of the block sizes is 3.

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 60, 35, 336, 1848, 16080, 33825, 93280, 539396, 3856216, 49390250, 147478800, 708041160, 2354289744, 18196716309, 150847235040, 2615953578700, 9488756856040, 57565330671310, 296745669669768, 1435526275752900, 12231628020365000
Offset: 0

Views

Author

Alois P. Heinz, Oct 05 2019

Keywords

Crossrefs

Column k=3 of A327869.
Cf. A328153.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 b(n$2, 0)-b(n$2, 3):
    seq(a(n), n=0..29);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, 1, If[i < 2, 0, b[n, i - 1, If[i == k, 0, k]]] + If[i == k, 0, b[n - i, Min[n - i, i - 1], k]*Binomial[n, i]]]];
    a[n_] := b[n, n, 0] - b[n, n, 3];
    a /@ Range[0, 29] (* Jean-François Alcover, May 04 2020, after Maple *)
Showing 1-3 of 3 results.