A080510
Triangle read by rows: T(n,k) gives the number of set partitions of {1,...,n} with maximum block length k.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 90, 30, 6, 1, 1, 231, 420, 175, 42, 7, 1, 1, 763, 2016, 1015, 280, 56, 8, 1, 1, 2619, 10024, 6111, 1890, 420, 72, 9, 1, 1, 9495, 51640, 38010, 12978, 3150, 600, 90, 10, 1, 1, 35695, 276980, 244035, 91938, 24024, 4950, 825, 110, 11, 1
Offset: 1
T(4,3) = 4 since there are 4 set partitions with longest block of length 3: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}} and {{1,2,4},{3}}.
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 4, 1;
1, 25, 20, 5, 1;
1, 75, 90, 30, 6, 1;
1, 231, 420, 175, 42, 7, 1;
1, 763, 2016, 1015, 280, 56, 8, 1;
1, 2619, 10024, 6111, 1890, 420, 72, 9, 1;
...
Cf.
A157396,
A157397,
A157398,
A157399,
A157400,
A157401,
A157402,
A157403,
A157404,
A157405. -
Peter Luschny, Mar 09 2009
Columns k=1..10 give:
A000012 (for n>0),
A001189,
A229245,
A229246,
A229247,
A229248,
A229249,
A229250,
A229251,
A229252. -
Alois P. Heinz, Sep 17 2013
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
T:= (n, k)-> b(n, k) -b(n, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 20 2012
-
<< DiscreteMath`NewCombinatorica`; Table[Length/@Split[Sort[Max[Length/@# ]&/@SetPartitions[n]]], {n, 12}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; T[n_, k_] := b[n, k]-b[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
A327869
Sum T(n,k) of multinomials M(n; lambda), where lambda ranges over all partitions of n into distinct parts incorporating k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 4, 3, 3, 1, 5, 4, 0, 4, 1, 16, 5, 10, 10, 5, 1, 82, 66, 75, 60, 15, 6, 1, 169, 112, 126, 35, 140, 21, 7, 1, 541, 456, 196, 336, 280, 224, 28, 8, 1, 2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1, 17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 0, 1;
4, 3, 3, 1;
5, 4, 0, 4, 1;
16, 5, 10, 10, 5, 1;
82, 66, 75, 60, 15, 6, 1;
169, 112, 126, 35, 140, 21, 7, 1;
541, 456, 196, 336, 280, 224, 28, 8, 1;
2272, 765, 1548, 1848, 1386, 630, 336, 36, 9, 1;
17966, 15070, 15525, 16080, 14070, 3780, 1050, 480, 45, 10, 1;
...
-
with(combinat):
T:= (n, k)-> add(multinomial(add(i, i=l), l[], 0),
l=select(x-> nops(x)=nops({x[]}) and
(k=0 or k in x), partition(n))):
seq(seq(T(n, k), k=0..n), n=0..11);
# second Maple program:
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2 n!*(b(n$2, 0)-`if`(k=0, 0, b(n$2, k))):
seq(seq(T(n, k), k=0..n), n=0..11);
-
b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n==0, 1, If[i<2, 0, b[n, i-1, If[i==k, 0, k]]] + If[i==k, 0, b[n-i, Min[n-i, i-1], k]/i!]]];
T[n_, k_] := n! (b[n, n, 0] - If[k == 0, 0, b[n, n, k]]);
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 28 2020, from 2nd Maple program *)
A276961
Number of set partitions of [2n] with largest set of size n.
Original entry on oeis.org
1, 1, 9, 90, 1015, 12978, 187110, 3008148, 53275365, 1028142830, 21426984722, 478684639524, 11394222257054, 287518726261900, 7658231720886900, 214521099685649640, 6299407928673657135, 193373975592937777770, 6189939300880260745050, 206159811915115686404700
Offset: 0
a(1) = 1: 1|2.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
end:
a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
seq(a(n), n=0..20);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k]*Binomial[n - 1, i - 1], {i, 1, Min[n, k]}]];
a[n_] := If[n == 0, 1, b[2*n, n] - b[2*n, n - 1]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
A328153
Number of set partitions of [n] such that at least one of the block sizes is 3.
Original entry on oeis.org
0, 0, 0, 1, 4, 20, 90, 455, 2352, 13132, 76540, 473660, 3069220, 20922330, 149021600, 1109629885, 8604815520, 69437698160, 581661169640, 5051885815603, 45411759404560, 421977921782270, 4047693372023070, 40034523497947132, 407818256494533984, 4274309903558446900
Offset: 0
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 3):
seq(a(n), n=0..27);
-
b[n_, k_] := b[n, k] = If[n==0, 1, Sum[If[j==k, 0, b[n-j, k] Binomial[n-1, j-1]], {j, 1, n}]];
a[n_] := b[n, 0] - b[n, 3];
a /@ Range[0, 27] (* Jean-François Alcover, May 02 2020, after Maple *)
A327885
Number of set partitions of [n] such that at least one of the block sizes is 2.
Original entry on oeis.org
0, 0, 1, 3, 9, 35, 150, 672, 3269, 17271, 97155, 578985, 3654750, 24331320, 170074177, 1244911605, 9520843575, 75890001665, 629104453236, 5413637745144, 48277814341765, 445463898405225, 4246785220234557, 41775507558584283, 423516880995944532
Offset: 0
a(2) = 1: 12.
a(3) = 3: 12|3, 13|2, 1|23.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 35: 123|45, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 145|23, 14|235, 14|23|5, 15|234, 15|23|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
`if`(j=k, 0, b(n-j, k)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n, 0)-b(n, 2):
seq(a(n), n=0..27);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[If[j == k, 0, b[n - j, k]* Binomial[n - 1, j - 1]], {j, n}]];
a[n_] := b[n, 0] - b[n, 2];
a /@ Range[0, 27] (* Jean-François Alcover, May 04 2020, after Maple *)
Showing 1-5 of 5 results.
Comments