cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A072233 Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002

Keywords

Comments

Regarded as a triangular table, this is another version of the number of partitions of n into k parts, A008284. - Franklin T. Adams-Watters, Dec 18 2006
From Gus Wiseman, Feb 10 2021: (Start)
T(n,k) is also the number of partitions of n with greatest part k, if we assume the greatest part of an empty partition to be 0. Row n = 9 counts the following partitions:
111111111 22221 333 432 54 63 72 81 9
222111 3222 441 522 621 711
2211111 3321 4221 531 6111
21111111 32211 4311 5211
33111 42111 51111
321111 411111
3111111
(End)

Examples

			Table begins (upper left corner = T(0,0)):
1 1 1  1  1  1  1  1  1 ...
0 1 1  1  1  1  1  1  1 ...
0 1 2  2  2  2  2  2  2 ...
0 1 2  3  3  3  3  3  3 ...
0 1 3  4  5  5  5  5  5 ...
0 1 3  5  6  7  7  7  7 ...
0 1 4  7  9 10 11 11 11 ...
0 1 4  8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From _Wolfdieter Lang_, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k  0  1  2  3  4  5  6  7  8  9 10 ...
00   1
01   0  1
02   0  1  1
03   0  1  1  1
04   0  1  2  1  1
05   0  1  2  2  1  1
06   0  1  3  3  2  1  1
07   0  1  3  4  3  2  1  1
08   0  1  4  5  5  3  2  1  1
09   0  1  4  7  6  5  3  2  1  1
10   0  1  5  8  9  7  5  3  2  1  1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From _Gus Wiseman_, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
  9  54  333  3222  22221  222111  2211111  21111111  111111111
     63  432  3321  32211  321111  3111111
     72  441  4221  33111  411111
     81  522  4311  42111
         531  5211  51111
         621  6111
         711
(End)
		

Crossrefs

Sum of antidiagonal entries T(n, k) with n+k=m equals A000041(m).
Alternating row sums are A081362.
Cf. A008284.
The version for factorizations is A316439.
The version for set partitions is A048993/A080510.
The version for strict partitions is A008289/A059607.
A047993 counts balanced partitions, ranked by A106529.
A063995/A105806 count partitions by Dyson rank.

Programs

  • Mathematica
    Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015

Formula

T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012

Extensions

Corrected by Franklin T. Adams-Watters, Dec 18 2006

A001189 Number of degree-n permutations of order exactly 2.

Original entry on oeis.org

0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735, 211799311, 997313823, 4809701439, 23758664095, 119952692895, 618884638911, 3257843882623, 17492190577599, 95680443760575, 532985208200575, 3020676745975551
Offset: 1

Views

Author

Keywords

Comments

Number of set partitions of [n] into blocks of size 2 and 1 with at least one block of size 2. - Olivier Gérard, Oct 29 2007
For n>=2, number of standard Young tableaux with height <= n - 1. That is, all tableaux (A000085) but the one with just one column. - Joerg Arndt, Oct 24 2012

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=1 of A143911, column k=2 of A080510, A182222. - Alois P. Heinz, Oct 24 2012
Column k=2 of A057731. - Alois P. Heinz, Feb 14 2013

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2) -Exp(x) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 14 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
          a(n-1) +(n-1) *(1+a(n-2)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 24 2012
    # alternative:
    A001189 := proc(n)
        local a,prs,p,k ;
        a := 0 ;
        for prs from 1 to n/2 do
            p := product(binomial(n-2*k,2),k=0..prs-1) ;
            a := a+p/prs!;
        end do:
        a;
    end proc:
    seq(A001189(n),n=1..13) ; # R. J. Mathar, Jan 04 2017
  • Mathematica
    RecurrenceTable[{a[1]==0,a[2]==1,a[n]==a[n-1]+(1+a[n-2])(n-1)},a[n],{n,25}] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    {a(n) = sum(j=1,floor(n/2), n!/(j!*(n-2*j)!*2^j))}; \\ G. C. Greubel, May 14 2019
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2) - exp(x), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2) - exp(x).
a(n) = A000085(n) - 1.
a(n) = b(n, 2), where b(n, d)=Sum_{k=1..n} (n-1)!/(n-k)! * Sum_{l:lcm{k, l}=d} b(n-k, l), b(0, 1)=1 is the number of degree-n permutations of order exactly d.
From Henry Bottomley, May 03 2001: (Start)
a(n) = a(n-1) + (1 + a(n-2))*(n-1).
a(n) = Sum_{j=1..floor(n/2)} n!/(j!*(n-2*j)!*(2^j)). (End)

A157400 A partition product with biggest-part statistic of Stirling_1 type (with parameter k = -2) as well as of Stirling_2 type (with parameter k = -2), (triangle read by rows).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 24, 24, 24, 1, 80, 180, 120, 120, 1, 330, 1200, 1080, 720, 720, 1, 1302, 7770, 10920, 7560, 5040, 5040, 1, 5936, 57456, 102480, 87360, 60480, 40320, 40320, 1, 26784, 438984, 970704, 1103760, 786240, 544320, 362880, 362880
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of Product_{j=0..n-1} ((k+1)*j - 1) and n! at k = -2, summed over parts with equal biggest part (Stirling_2 type) as well as partition product of Product_{j=0..n-2} (k-n+j+2) and n! at k = -2 (Stirling_1 type).
It shares this property with the signless Lah numbers.
Underlying partition triangle is A130561.
Same partition product with length statistic is A105278.
Diagonal a(A000217) = A000142.
Row sum is A000262.
T(n,k) is the number of nilpotent elements in the symmetric inverse semigroup (partial bijections) on [n] having index k. Equivalently, T(n,k) is the number of directed acyclic graphs on n labeled nodes with every node having indegree and outdegree at most one and the longest path containing exactly k nodes. - Geoffrey Critzer, Nov 21 2021

Examples

			Triangle starts:
  1;
  1,   2;
  1,   6,    6;
  1,  24,   24,   24;
  1,  80,  180,  120, 120;
  1, 330, 1200, 1080, 720, 720;
  ...
		

Crossrefs

Programs

  • Maple
    egf:= k-> exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)):
    T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Oct 10 2015
  • Mathematica
    egf[k_] := Exp[(x^(k+1)-x)/(x-1)] - Exp[(x^k-x)/(x-1)]; T[n_, k_] := n! * SeriesCoefficient[egf[k], {x, 0, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 11 2015, after Alois P. Heinz *)

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-j-1)
OR f_n = Product_{j=0..n-2} (j-n) since both have the same absolute value n!.
E.g.f. of column k: exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)). - Alois P. Heinz, Oct 10 2015

A126074 Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1

Views

Author

Dan Dima, Mar 01 2007

Keywords

Comments

Sum of the n-th row is the number of all permutations of n elements: Sum_{k=1..n, T(n,k)} = n! = A000142(n) We can extend T(n,k)=0, if k<=0 or k>n.
From Peter Luschny, Mar 07 2009: (Start)
Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A102189.
Same partition product with length statistic is A008275.
Diagonal a(A000217(n)) = rising_factorial(1,n-1), A000142(n-1) (n > 0).
Row sum is A000142. (End)
Let k in {1,2,3,...} index the family of sequences A000012, A000085, A057693, A070945, A070946, A070947, ... respectively. Column k is the k-th sequence minus its immediate predecessor. For example, T(5,3)=A057693(5)-A000085(5). - Geoffrey Critzer, May 23 2009

Examples

			Triangle T(n,k) begins:
  1;
  1,   1;
  1,   3,    2;
  1,   9,    8,    6;
  1,  25,   40,   30,   24;
  1,  75,  200,  180,  144,  120;
  1, 231,  980, 1260, 1008,  840,  720;
  1, 763, 5152, 8820, 8064, 6720, 5760, 5040;
  ...
		

Crossrefs

Cf. A000142.
T(2n,n) gives A052145 (for n>0). - Alois P. Heinz, Apr 21 2017

Programs

  • Maple
    A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
           add(mul(n-i, i=1..j-1)*A(n-j,k), j=1..k)))
        end:
    T:= (n, k)-> A(n, k) -A(n, k-1):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 11 2013
  • Mathematica
    Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid (* Geoffrey Critzer, May 23 2009 *)
  • Sage
    def A126074(n, k):
        f = factorial(n)
        P = Partitions(n, max_part=k, inner=[k])
        return sum(f // p.aut() for p in P)
    for n in (1..9): print([A126074(n,k) for k in (1..n)]) # Peter Luschny, Apr 17 2016

Formula

T(n,1) = 1.
T(n,2) = n! * Sum_{k=1..[n/2]} 1/(k! * (2!)^k * (n-2*k)!).
T(n,k) = n!/k * (1-1/(n-k)-...-1/(k+1)-1/2k), if n/3 < k <= n/2.
T(n,k) = n!/k, if n/2 < k <= n.
T(n,n) = (n-1)! = A000142(n-1).
E.g.f. for k-th column: exp(-x^k*LerchPhi(x,1,k))*(exp(x^k/k)-1)/(1-x). - Vladeta Jovovic, Mar 03 2007
From Peter Luschny, Mar 07 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+1). (End)
Sum_{k=1..n} k * T(n,k) = A028418(n). - Alois P. Heinz, May 17 2016

A229223 Number G(n,k) of set partitions of {1,...,n} into sets of size at most k; triangle G(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 10, 14, 15, 0, 1, 26, 46, 51, 52, 0, 1, 76, 166, 196, 202, 203, 0, 1, 232, 652, 827, 869, 876, 877, 0, 1, 764, 2780, 3795, 4075, 4131, 4139, 4140, 0, 1, 2620, 12644, 18755, 20645, 21065, 21137, 21146, 21147
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

John Riordan calls these Allied Bell Numbers. - N. J. A. Sloane, Jan 10 2018
G(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. G(n,k) = G(n,n) = A000110(n) for k>n.
G(n,k) - G(n,k-1) = A080510(n,k).
A column G(n>=0,k) can be generated by a linear recurrence with polynomial coefficients, where the initial terms correspond with A000110, and the coefficients contain constant factors derived from A008279 (cf. recg(k) in the fourth Maple program below). - Georg Fischer, May 19 2021

Examples

			G(4,2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
Triangle G(n,k) begins:
  1;
  0,  1;
  0,  1,   2;
  0,  1,   4,    5;
  0,  1,  10,   14,   15,
  0,  1,  26,   46,   51,   52;
  0,  1,  76,  166,  196,  202,  203;
  0,  1, 232,  652,  827,  869,  876,  877;
  0,  1, 764, 2780, 3795, 4075, 4131, 4139, 4140;
  ...
		

Crossrefs

Main diagonal gives: A000110. Lower diagonal gives: A058692.
Cf. A066223 (G(2n,2)), A229228 (G(2n,n)), A229229 (G(n^2,n)), A227223 (G(2^n,n)).

Programs

  • Maple
    G:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, 0,
           add(G(n-k*j, k-1) *n!/k!^j/(n-k*j)!/j!, j=0..n/k)))
        end:
    seq(seq(G(n, k), k=0..n), n=0..10);
    # second Maple program:
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j,k) od; % fi
        end:
    seq(seq(G(n, k), k=0..n), n=0..10);
    # third Maple program:
    G:= proc(n, k) option remember; `if`(n=0, 1, add(
          G(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
        end:
    seq(seq(G(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 26 2017
    # fourth Maple program (for columns G(n>=0,k)):
    init := n -> seq(a(j) = combinat:-bell(j), j=0..n): # A000110
    b := (n, k) -> mul((n - j)/(j + 1), j = 0..k-1):
    recg := k -> {(k-1)!*(add(j*b(n, j)*a(n-j), j = 1..k) - n*a(n)), init(k-1)}:
    column := proc(k, len) local f; f := gfun:-rectoproc(recg(k), a(n), remember):
    map(f, [$0..len-1]) end:
    seq(print(column(k, 12)), k=1..9); # Georg Fischer, May 19 2021
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[g[n - k*j, k - 1] *n!/k!^j/(n - k*j)!/j!, { j, 0, n/k}]]]; Table[Table[g[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)

Formula

G(0,k) = 1, G(n,k) = 0 for n>0 and k<1, otherwise G(n,k) = Sum_{j=0..floor(n/k)} G(n-k*j,k-1) * n!/(k!^j*(n-k*j)!*j!).
G(n,k) = G(n-1,k) +(n-1)/1 *(G(n-2,k) +(n-2)/2 *(G(n-3,k) +(n-3)/3 *(G(n-4,k) + ... +(n-(k-1))/(k-1) *G(n-k,k)...))).
E.g.f. of column k: exp(Sum_{j=1..k} x^j/j!).

A276922 Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 42, 8, 1, 0, 120, 330, 80, 10, 1, 0, 720, 2970, 860, 120, 12, 1, 0, 5040, 30240, 10290, 1540, 168, 14, 1, 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1, 0, 362880, 4377240, 1977360, 326970, 38808, 3696, 288, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,      1;
  0,     6,      6,      1;
  0,    24,     42,      8,     1;
  0,   120,    330,     80,    10,    1;
  0,   720,   2970,    860,   120,   12,   1;
  0,  5040,  30240,  10290,  1540,  168,  14,  1;
  0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A320758, A320759, A320760, A320761, A320762, A320763, A320764, A320765, A320766.
Row sums give A000670.
T(2n,n) gives A276923.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] :=  A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)

Formula

E.g.f. for column k>0: 1/(1-Sum_{i=1..k} x^i/i!) - 1/(1-Sum_{i=1..k-1} x^i/i!).
T(n,k) = A276921(n,k) - A276921(n,k-1) for k>0. T(n,0) = A000007(0).

A157396 A partition product of Stirling_2 type [parameter k = -6] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 6, 1, 18, 66, 1, 144, 264, 1056, 1, 600, 4620, 5280, 22176, 1, 4950, 68640, 110880, 133056, 576576, 1, 26586, 639870, 3141600, 3259872, 4036032, 17873856, 1, 234528, 10759056, 69263040, 105557760, 113008896, 142990848
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -6,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134278.
Same partition product with length statistic is A049385.
Diagonal a(A000217) = A008548.
Row sum is A049412.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-5*j - 1).

Extensions

Offset corrected by Peter Luschny, Mar 14 2009

A157397 A partition product of Stirling_2 type [parameter k = -5] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 5, 1, 15, 45, 1, 105, 180, 585, 1, 425, 2700, 2925, 9945, 1, 3075, 34650, 52650, 59670, 208845, 1, 15855, 308700, 1248975, 1253070, 1461915, 5221125, 1, 123515, 4475520, 23689575, 33972120, 35085960, 41769000
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134273.
Same partition product with length statistic is A049029.
Diagonal a(A000217) = A007696.
Row sum is A049120.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-4*j - 1).

Extensions

Offset corrected by Peter Luschny, Mar 14 2009

A157398 A partition product of Stirling_2 type [parameter k = -4] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 4, 1, 12, 28, 1, 72, 112, 280, 1, 280, 1400, 1400, 3640, 1, 1740, 15120, 21000, 21840, 58240, 1, 8484, 126420, 401800, 382200, 407680, 1106560, 1, 57232, 1538208, 6370000, 8357440, 8153600, 8852480, 24344320, 1
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134149.
Same partition product with length statistic is A035469.
Diagonal a(A000217) = A007559.
Row sum is A049119.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-3*j - 1).

A157399 A partition product of Stirling_2 type [parameter k = -3] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 3, 1, 9, 15, 1, 45, 60, 105, 1, 165, 600, 525, 945, 1, 855, 5250, 6300, 5670, 10395, 1, 3843, 39900, 91875, 79380, 72765, 135135, 1, 21819, 391440, 1164975, 1323000, 1164240, 1081080, 2027025, 1
Offset: 1

Views

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134144.
Same partition product with length statistic is A035342.
Diagonal a(A000217) = A001147.
Row sum is A049118.

Crossrefs

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-2*j - 1).
Showing 1-10 of 32 results. Next