A157400
A partition product with biggest-part statistic of Stirling_1 type (with parameter k = -2) as well as of Stirling_2 type (with parameter k = -2), (triangle read by rows).
Original entry on oeis.org
1, 1, 2, 1, 6, 6, 1, 24, 24, 24, 1, 80, 180, 120, 120, 1, 330, 1200, 1080, 720, 720, 1, 1302, 7770, 10920, 7560, 5040, 5040, 1, 5936, 57456, 102480, 87360, 60480, 40320, 40320, 1, 26784, 438984, 970704, 1103760, 786240, 544320, 362880, 362880
Offset: 1
Triangle starts:
1;
1, 2;
1, 6, 6;
1, 24, 24, 24;
1, 80, 180, 120, 120;
1, 330, 1200, 1080, 720, 720;
...
Cf.
A157396,
A157397,
A157398,
A157399,
A080510,
A157401,
A157402,
A157403,
A157404,
A157405,
A157386,
A157385,
A157384,
A157383,
A126074,
A157391,
A157392,
A157393,
A157394,
A157395.
-
egf:= k-> exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)):
T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 10 2015
-
egf[k_] := Exp[(x^(k+1)-x)/(x-1)] - Exp[(x^k-x)/(x-1)]; T[n_, k_] := n! * SeriesCoefficient[egf[k], {x, 0, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 11 2015, after Alois P. Heinz *)
A145877
Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
Offset: 1
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23).
Triangle starts:
1;
1, 1;
4, 0, 2;
15, 3, 0, 6;
76, 20, 0, 0, 24;
455, 105, 40, 0, 0, 120;
3186, 714, 420, 0, 0, 0, 720;
25487, 5845, 2688, 1260, 0, 0, 0, 5040;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
-
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k),x=0,16) end do: T:= proc(n,k) options operator, arrow: factorial(n)*coeff(g[k],x,n) end proc: for n to 11 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Rest[Transpose[Table[Range[0, 16]! CoefficientList[
Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}],x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
A293211
Triangle T(n,k) is the number of permutations on n elements with at least one k-cycle for 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 4, 3, 2, 15, 9, 8, 6, 76, 45, 40, 30, 24, 455, 285, 200, 180, 144, 120, 3186, 1995, 1400, 1260, 1008, 840, 720, 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040, 229384, 142695, 103040, 79380, 72576, 60480, 51840, 45360, 40320, 2293839, 1427895, 1030400, 793800, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1
T(n,k) (the first 8 rows):
: 1;
: 1, 1;
: 4, 3, 2;
: 15, 9, 8, 6;
: 76, 45, 40, 30, 24;
: 455, 285, 200, 180, 144, 120;
: 3186, 1995, 1400, 1260, 1008, 840, 720;
: 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040;
...
T(4,3)=8 since there are exactly 8 permutations on {1,2,3,4} with at least one 3-cycle: (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), and (4)(132).
-
T:=(n,k)->n!*sum((-1)^(j+1)*(1/k)^j/j!,j=1..floor(n/k)); seq(seq(T(n,k),k=1..n),n=1..10);
-
Table[n!*Sum[(-1)^(j + 1)*(1/k)^j/j!, {j, Floor[n/k]}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Oct 02 2017 *)
A028418
Sum over all n! permutations of n letters of maximum cycle length.
Original entry on oeis.org
1, 3, 13, 67, 411, 2911, 23563, 213543, 2149927, 23759791, 286370151, 3734929903, 52455166063, 788704078527, 12648867695311, 215433088624351, 3884791172487903, 73919882720901823, 1480542628345939807, 31128584449987511871, 685635398619169059391
Offset: 1
Joe Keane (jgk(AT)jgk.org)
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
-
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
b(n-j, max(m,j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..25); # Alois P. Heinz, May 14 2016
-
kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}];
a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax]
(* Jean-François Alcover, Jun 22 2011, after e.g.f. *)
a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* Michael Somos, Aug 19 2018 *)
A157384
A partition product of Stirling_1 type [parameter k = -4] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 4, 1, 12, 20, 1, 72, 80, 120, 1, 280, 1000, 600, 840, 1, 1740, 9200, 9000, 5040, 6720, 1, 8484, 79100, 138600, 88200, 47040, 60480, 1, 57232, 874720, 1789200, 1552320, 940800, 483840, 604800, 1, 328752, 9532880
Offset: 1
A157383
A partition product of Stirling_1 type [parameter k = -3] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 3, 1, 9, 12, 1, 45, 48, 60, 1, 165, 480, 300, 360, 1, 855, 3840, 3600, 2160, 2520, 1, 3843, 29400, 46200, 30240, 17640, 20160, 1, 21819, 272832, 520800, 443520, 282240, 161280, 181440
Offset: 1
A157386
A partition product of Stirling_1 type [parameter k = -6] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 6, 1, 18, 42, 1, 144, 168, 336, 1, 600, 2940, 1680, 3024, 1, 4950, 33600, 35280, 18144, 30240, 1, 26586, 336630, 717360, 444528, 211680, 332640, 1, 234528, 4870992, 11313120, 10329984, 5927040, 2661120, 3991680
Offset: 1
A157385
A partition product of Stirling_1 type [parameter k = -5] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 5, 1, 15, 30, 1, 105, 120, 210, 1, 425, 1800, 1050, 1680, 1, 3075, 18600, 18900, 10080, 15120, 1, 15855, 174300, 338100, 211680, 105840, 151200, 1, 123515, 2227680, 4865700, 4327680, 2540160, 1209600, 1663200, 1, 757755
Offset: 1
A349979
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 4;
[4] 6, 15, 3;
[5] 24, 61, 35;
[6] 120, 290, 270, 40;
[7] 720, 1646, 1974, 700;
[8] 5040, 11025, 14707, 8288, 1260;
[9] 40320, 85345, 117459, 90272, 29484;
...
Column 0 gives 1 together with
A000142.
Column 1 gives 1 - (n-1)! +
A006231(n).
T(2n,n) gives
A110468(n-1) for n>=1.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 07 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A349980
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 1, 3;
[4] 6, 7, 3, 8;
[5] 24, 31, 15, 20, 30;
[6] 120, 191, 135, 40, 90, 144;
[7] 720, 1331, 945, 280, 420, 504, 840;
[8] 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760;
[9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360;
...
Column 0 gives 1 together with
A000142.
Column 1 gives the nonzero terms of
A155521.
T(n,n-1) gives
A059171(n) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m,
0, l[2]), add(b(n-j, sort([l[], j])[1..2])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 07 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
Showing 1-10 of 22 results.
Comments