cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A110468 a(n) = (2*n + 1)!/(n + 1).

Original entry on oeis.org

1, 3, 40, 1260, 72576, 6652800, 889574400, 163459296000, 39520825344000, 12164510040883200, 4644631106519040000, 2154334728240414720000, 1193170003333152768000000, 777776389315596582912000000, 589450799582646796969574400000, 513927415886120176107847680000000
Offset: 0

Views

Author

Paul Barry, Jul 21 2005

Keywords

Comments

Convolution of (-1)^n*n! and n! with interpolated zeros suppressed.
Denominator of absolute value of coefficient of 1/(x+n^2) in the partial fraction decomposition of 1/(x+1)*1/(x+4)*..*1/(x+n^2). - Joris Roos (jorisr(AT)gmx.de), Aug 07 2009
With offset = 1: a(n) is the number of permutations of {1,2,...,2n} composed of two cycles of length n. - Geoffrey Critzer, Nov 11 2012

Crossrefs

Programs

  • Mathematica
    Table[(2n)!/(2n^2),{n,1,20}] (* Geoffrey Critzer, Nov 11 2012 *)
  • PARI
    for(n=0,50, print1((2*n+1)!/(n+1), ", ")) \\ G. C. Greubel, Aug 28 2017

Formula

E.g.f.: log((1-x)*(1+x))/(-x).
a(n) = (2*n)!*Sum_{k = 0..2*n} (-1)^k/binomial(2*n, k).
a(n) = Sum_{k = 0..2*n} k!*(-1)^k*(2*n-k)!.
Sum_{n>=0} 1/a(n) = e/2. - Franz Vrabec, Jan 17 2008
(n+1)*a(n) + 2*(-n^2)*(2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 15 2012
a(n) = Product_{i=1..n} (n+1-i)*(n+1+i). - Vaclav Kotesovec, Oct 21 2014
a(n) = A145877(2*n+2, n+1). - Alois P. Heinz, Apr 21 2017
a(n) = A346085(2*n+2, n+1). - Alois P. Heinz, Jul 04 2021
Sum_{n>=0} (-1)^n/a(n) = (cos(1) + sin(1))/2 = (1/2) * A143623. - Amiram Eldar, Feb 08 2022
a(p-1) == 1 (mod p), p a prime. - Peter Bala, Jul 29 2024
Sum_{n>=0} x^(2*n+1)/a(n) = (sinh(x) + x*cosh(x))/2. - Michael Somos, Jul 23 2025

Extensions

Simpler definition from Robert Israel, Jul 20 2006

A028417 Sum over all n! permutations of n elements of minimum lengths of cycles.

Original entry on oeis.org

1, 3, 10, 45, 236, 1505, 10914, 90601, 837304, 8610129, 96625970, 1184891081, 15665288484, 223149696601, 3394965018886, 55123430466945, 948479737691504, 17289345305870561, 332019600921360594, 6713316975465246889, 142321908843254560540, 3161718732648662557161
Offset: 1

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Crossrefs

Cf. A005225.
Column k=1 of A322383.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
          b(n-j, min(m,j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, infinity):
    seq(a(n), n=1..25);  # Alois P. Heinz, May 14 2016
  • Mathematica
    Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *)
    b[n_, m_] := b[n, m] = If[n == 0, m, Sum[(j-1)! b[n-j, Min[m, j]]* Binomial[n-1, j-1], {j, n}]];
    a[n_] := b[n, Infinity];
    Array[a, 25] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *)

Formula

E.g.f.: Sum[k>0, -1+ exp(Sum(j>=k, x^j/j))]. - Vladeta Jovovic, Jul 26 2004
a(n) = Sum_{k=1..n} k * A145877(n,k). - Alois P. Heinz, Jul 28 2014

Extensions

More terms from Vladeta Jovovic, Sep 19 2002

A349979 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0

Views

Author

Steven Finch, Dec 07 2021

Keywords

Comments

If the permutation has no second cycle, then its second-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]     1;
[1]     1;
[2]     1,     1;
[3]     2,     4;
[4]     6,    15,      3;
[5]    24,    61,     35;
[6]   120,   290,    270,    40;
[7]   720,  1646,   1974,   700;
[8]  5040, 11025,  14707,  8288,  1260;
[9] 40320, 85345, 117459, 90272, 29484;
    ...
		

Crossrefs

Column 0 gives 1 together with A000142.
Column 1 gives 1 - (n-1)! + A006231(n).
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n>=1.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
          b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
    seq(T(n), n=0..12);  # Alois P. Heinz, Dec 07 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..floor(n/2)} k * T(n,k) = A332851(n). - Alois P. Heinz, Dec 07 2021

A349980 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0

Views

Author

Steven Finch, Dec 07 2021

Keywords

Comments

If the permutation has no second cycle, then its second-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]     1;
[1]     1;
[2]     1,     1;
[3]     2,     1,     3;
[4]     6,     7,     3,     8;
[5]    24,    31,    15,    20,    30;
[6]   120,   191,   135,    40,    90,   144;
[7]   720,  1331,   945,   280,   420,   504,   840;
[8]  5040, 10655,  7077,  4480,  1260,  2688,  3360,  5760;
[9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360;
    ...
		

Crossrefs

Column 0 gives 1 together with A000142.
Column 1 gives the nonzero terms of A155521.
Row sums give A000142.
T(n,n-1) gives A059171(n) for n>=1.

Programs

  • Maple
    m:= infinity:
    b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m,
          0, l[2]), add(b(n-j, sort([l[], j])[1..2])
                   *binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 07 2021
  • Mathematica
    m = Infinity;
    b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
    T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..max(0,n-1)} k * T(n,k) = A332906(n). - Alois P. Heinz, Dec 07 2021

Extensions

More terms from Alois P. Heinz, Dec 07 2021

A350015 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 1, 2, 5, 1, 17, 7, 74, 46, 394, 311, 15, 2484, 2241, 315, 18108, 17627, 4585, 149904, 152839, 57897, 2240, 1389456, 1460944, 705600, 72800, 14257440, 15326180, 8673060, 1660120, 160460640, 175421214, 110271546, 31600800, 1247400, 1965444480, 2177730270, 1469308698, 559402272, 55135080
Offset: 0

Views

Author

Steven Finch, Dec 08 2021

Keywords

Comments

If the permutation has no third cycle, then its third-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      5,      1;
[4]     17,      7;
[5]     74,     46;
[6]    394,    311,    15;
[7]   2484,   2241,   315;
[8]  18108,  17627,  4585;
[9] 149904, 152839, 57897, 2240;
...
		

Crossrefs

Column 0 gives 1 together with A000774.
Row sums give A000142.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
          b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
    seq(lprint(T(n)), n=0..14);  # Alois P. Heinz, Dec 11 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..floor(n/3)} k * T(n,k) = A332852(n) for n >= 3. - Alois P. Heinz, Dec 12 2021

A350016 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-2).

Original entry on oeis.org

1, 1, 2, 5, 1, 17, 1, 6, 74, 11, 15, 20, 394, 56, 60, 120, 90, 2484, 407, 525, 490, 630, 504, 18108, 3235, 4725, 2240, 4620, 4032, 3360, 149904, 29143, 40509, 27440, 26460, 33264, 30240, 25920, 1389456, 291394, 398790, 319760, 163800, 302400, 277200, 259200, 226800
Offset: 0

Views

Author

Steven Finch, Dec 08 2021

Keywords

Comments

If the permutation has no third cycle, then its third-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      5,     1;
[4]     17,     1,     6;
[5]     74,    11,    15,    20;
[6]    394,    56,    60,   120,    90;
[7]   2484,   407,   525,   490,   630,   504;
[8]  18108,  3235,  4725,  2240,  4620,  4032,  3360;
[9] 149904, 29143, 40509, 27440, 26460, 33264, 30240, 25920;
...
		

Crossrefs

Column 0 gives 1 together with A000774.
Column 1 gives the column 3 of A208956.
Row sums give A000142.

Programs

  • Maple
    m:= infinity:
    b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[3]=m,
          0, l[3]), add(b(n-j, sort([l[], j])[1..3])
                   *binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$3])):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 11 2021
  • Mathematica
    m = Infinity;
    b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[3]] == m, 0, l[[3]]], Sum[b[n-j, Sort[Append[l, j]][[1;;3]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
    T[n_] := With[{p = b[n, {m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..n-2} k * T(n,k) = A332907(n) for n >= 3. - Alois P. Heinz, Dec 12 2021

A350273 Irregular triangle read by rows: T(n,k) is the number of n-permutations whose fourth-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/4).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 109, 11, 619, 101, 4108, 932, 31240, 8975, 105, 268028, 91387, 3465, 2562156, 991674, 74970, 27011016, 11514394, 1391390, 311378616, 143188574, 24188010, 246400, 3897004032, 1905067958, 412136010, 12812800, 52626496896, 27059601596, 7053834788, 438357920
Offset: 0

Views

Author

Steven Finch, Dec 22 2021

Keywords

Comments

If the permutation has no fourth cycle, then its fourth-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      6;
[4]     23,     1;
[5]    109,    11;
[6]    619,   101;
[7]   4108,   932;
[8]  31240,  8975,  105;
[9] 268028, 91387, 3465;
    ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
          b(n-j, sort([l[], j])[2..5])*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
    seq(T(n), n=0..14);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 5]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..floor(n/4)} k * T(n,k) = A332853(n) for n >= 4.

Extensions

More terms from Alois P. Heinz, Dec 22 2021

A350274 Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).

Original entry on oeis.org

1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0

Views

Author

Steven Finch, Dec 22 2021

Keywords

Comments

If the permutation has no fourth cycle, then its fourth-longest cycle is defined to have length 0.

Examples

			Triangle begins:
[0]      1;
[1]      1;
[2]      2;
[3]      6;
[4]     23,    1;
[5]    109,    1,    10;
[6]    619,   16,    45,    40;
[7]   4108,   92,   210,   420,   210;
[8]  31240,  771,  1645,  2800,  2520,  1344;
[9] 268028, 6883, 17325, 15960, 26460, 18144, 10080;
    ...
		

Crossrefs

Column 0 is 1 for n=0, together with A000142(n) - A122105(n-1) for n>=1.
Row sums give A000142.

Programs

  • Maple
    m:= infinity:
    b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m,
          0, l[4]), add(b(n-j, sort([l[], j])[1..4])
                   *binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])):
    seq(T(n), n=0..11);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    m = Infinity;
    b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]];
    T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)

Formula

Sum_{k=0..n-3} k * T(n,k) = A332908(n) for n >= 4.

Extensions

More terms from Alois P. Heinz, Dec 22 2021

A346085 Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2021

Keywords

Examples

			T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
  1;
  0,       1;
  0,       1,      1;
  0,       4,      0,     2;
  0,      15,      3,     0,    6;
  0,      96,      0,     0,    0,    24;
  0,     455,    105,    40,    0,     0, 120;
  0,    4320,      0,     0,    0,     0,   0, 720;
  0,   29295,   4725,     0, 1260,     0,   0,   0, 5040;
  0,  300160,      0, 22400,    0,     0,   0,   0,    0, 40320;
  0, 2663199, 530145,     0,    0, 72576,   0,   0,    0,     0, 362880;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A079128.
Even bisection of column k=2 gives A346086.
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n >= 1.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
          *b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
         b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
    T[n_] := CoefficientList[b[n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A346066(n).
Sum_{prime p <= n} T(n,p) = A359951(n). - Alois P. Heinz, Jan 20 2023

A364967 Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 3, 3, 10, 6, 8, 25, 45, 20, 30, 176, 60, 250, 90, 144, 721, 861, 770, 1344, 504, 840, 6406, 1778, 7980, 6300, 8736, 3360, 5760, 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360, 436402, 84150, 363680, 456120, 708048, 378000, 572400, 226800, 403200
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2023

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432).
T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3).
T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).
Triangle T(n,k) begins:
      1;
      1;
      2;
      3,     3;
     10,     6,     8;
     25,    45,    20,    30;
    176,    60,   250,    90,   144;
    721,   861,   770,  1344,   504,   840;
   6406,  1778,  7980,  6300,  8736,  3360,  5760;
  42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360;
  ...
		

Crossrefs

Row sums give A000142.
Column k=0 gives A005225 (for n>=1).
T(n+1,n-1) gives A001048(n) (for n>=1).

Programs

  • Maple
    b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
         b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

T(n,k) == 0 (mod k!).
Sum_{k=0..max(0,n-2)} T(n,k)/k! = A365229(n).
Showing 1-10 of 13 results. Next