A110468
a(n) = (2*n + 1)!/(n + 1).
Original entry on oeis.org
1, 3, 40, 1260, 72576, 6652800, 889574400, 163459296000, 39520825344000, 12164510040883200, 4644631106519040000, 2154334728240414720000, 1193170003333152768000000, 777776389315596582912000000, 589450799582646796969574400000, 513927415886120176107847680000000
Offset: 0
A028417
Sum over all n! permutations of n elements of minimum lengths of cycles.
Original entry on oeis.org
1, 3, 10, 45, 236, 1505, 10914, 90601, 837304, 8610129, 96625970, 1184891081, 15665288484, 223149696601, 3394965018886, 55123430466945, 948479737691504, 17289345305870561, 332019600921360594, 6713316975465246889, 142321908843254560540, 3161718732648662557161
Offset: 1
Joe Keane (jgk(AT)jgk.org)
-
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
b(n-j, min(m,j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, infinity):
seq(a(n), n=1..25); # Alois P. Heinz, May 14 2016
-
Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *)
b[n_, m_] := b[n, m] = If[n == 0, m, Sum[(j-1)! b[n-j, Min[m, j]]* Binomial[n-1, j-1], {j, n}]];
a[n_] := b[n, Infinity];
Array[a, 25] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *)
A349979
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 4;
[4] 6, 15, 3;
[5] 24, 61, 35;
[6] 120, 290, 270, 40;
[7] 720, 1646, 1974, 700;
[8] 5040, 11025, 14707, 8288, 1260;
[9] 40320, 85345, 117459, 90272, 29484;
...
Column 0 gives 1 together with
A000142.
Column 1 gives 1 - (n-1)! +
A006231(n).
T(2n,n) gives
A110468(n-1) for n>=1.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 07 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A349980
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 1, 3;
[4] 6, 7, 3, 8;
[5] 24, 31, 15, 20, 30;
[6] 120, 191, 135, 40, 90, 144;
[7] 720, 1331, 945, 280, 420, 504, 840;
[8] 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760;
[9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360;
...
Column 0 gives 1 together with
A000142.
Column 1 gives the nonzero terms of
A155521.
T(n,n-1) gives
A059171(n) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m,
0, l[2]), add(b(n-j, sort([l[], j])[1..2])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 07 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350015
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).
Original entry on oeis.org
1, 1, 2, 5, 1, 17, 7, 74, 46, 394, 311, 15, 2484, 2241, 315, 18108, 17627, 4585, 149904, 152839, 57897, 2240, 1389456, 1460944, 705600, 72800, 14257440, 15326180, 8673060, 1660120, 160460640, 175421214, 110271546, 31600800, 1247400, 1965444480, 2177730270, 1469308698, 559402272, 55135080
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 5, 1;
[4] 17, 7;
[5] 74, 46;
[6] 394, 311, 15;
[7] 2484, 2241, 315;
[8] 18108, 17627, 4585;
[9] 149904, 152839, 57897, 2240;
...
Column 0 gives 1 together with
A000774.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(lprint(T(n)), n=0..14); # Alois P. Heinz, Dec 11 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350016
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-2).
Original entry on oeis.org
1, 1, 2, 5, 1, 17, 1, 6, 74, 11, 15, 20, 394, 56, 60, 120, 90, 2484, 407, 525, 490, 630, 504, 18108, 3235, 4725, 2240, 4620, 4032, 3360, 149904, 29143, 40509, 27440, 26460, 33264, 30240, 25920, 1389456, 291394, 398790, 319760, 163800, 302400, 277200, 259200, 226800
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 5, 1;
[4] 17, 1, 6;
[5] 74, 11, 15, 20;
[6] 394, 56, 60, 120, 90;
[7] 2484, 407, 525, 490, 630, 504;
[8] 18108, 3235, 4725, 2240, 4620, 4032, 3360;
[9] 149904, 29143, 40509, 27440, 26460, 33264, 30240, 25920;
...
Column 0 gives 1 together with
A000774.
Column 1 gives the column 3 of
A208956.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[3]=m,
0, l[3]), add(b(n-j, sort([l[], j])[1..3])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$3])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 11 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[3]] == m, 0, l[[3]]], Sum[b[n-j, Sort[Append[l, j]][[1;;3]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350273
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose fourth-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/4).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 11, 619, 101, 4108, 932, 31240, 8975, 105, 268028, 91387, 3465, 2562156, 991674, 74970, 27011016, 11514394, 1391390, 311378616, 143188574, 24188010, 246400, 3897004032, 1905067958, 412136010, 12812800, 52626496896, 27059601596, 7053834788, 438357920
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 11;
[6] 619, 101;
[7] 4108, 932;
[8] 31240, 8975, 105;
[9] 268028, 91387, 3465;
...
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..5])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 22 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 5]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A350274
Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 1, 10;
[6] 619, 16, 45, 40;
[7] 4108, 92, 210, 420, 210;
[8] 31240, 771, 1645, 2800, 2520, 1344;
[9] 268028, 6883, 17325, 15960, 26460, 18144, 10080;
...
Column 0 is 1 for n=0, together with
A000142(n) -
A122105(n-1) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m,
0, l[4]), add(b(n-j, sort([l[], j])[1..4])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])):
seq(T(n), n=0..11); # Alois P. Heinz, Dec 22 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A346085
Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
Offset: 0
T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 2;
0, 15, 3, 0, 6;
0, 96, 0, 0, 0, 24;
0, 455, 105, 40, 0, 0, 120;
0, 4320, 0, 0, 0, 0, 0, 720;
0, 29295, 4725, 0, 1260, 0, 0, 0, 5040;
0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320;
0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880;
...
Even bisection of column k=2 gives
A346086.
T(2n,n) gives
A110468(n-1) for n >= 1.
-
b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..12);
-
b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
A364967
Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
Original entry on oeis.org
1, 1, 2, 3, 3, 10, 6, 8, 25, 45, 20, 30, 176, 60, 250, 90, 144, 721, 861, 770, 1344, 504, 840, 6406, 1778, 7980, 6300, 8736, 3360, 5760, 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360, 436402, 84150, 363680, 456120, 708048, 378000, 572400, 226800, 403200
Offset: 0
T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432).
T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3).
T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).
Triangle T(n,k) begins:
1;
1;
2;
3, 3;
10, 6, 8;
25, 45, 20, 30;
176, 60, 250, 90, 144;
721, 861, 770, 1344, 504, 840;
6406, 1778, 7980, 6300, 8736, 3360, 5760;
42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360;
...
Column k=0 gives
A005225 (for n>=1).
T(n+1,n-1) gives
A001048(n) (for n>=1).
-
b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..12);
-
b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := CoefficientList[b[n, n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)
Showing 1-10 of 13 results.
Comments