A180191 Number of permutations of [n] having at least one succession. A succession of a permutation p is a position i such that p(i+1)-p(i) = 1.
0, 1, 3, 13, 67, 411, 2921, 23633, 214551, 2160343, 23897269, 288102189, 3760013027, 52816397219, 794536751217, 12744659120521, 217140271564591, 3916221952414383, 74539067188152941, 1493136645424092773, 31400620285465593339, 691708660911435955579
Offset: 1
Keywords
A322383 Number T(n,k) of entries in the k-th cycles of all permutations of [n] when cycles are ordered by increasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 3, 1, 10, 7, 1, 45, 37, 13, 1, 236, 241, 101, 21, 1, 1505, 1661, 896, 226, 31, 1, 10914, 13301, 7967, 2612, 442, 43, 1, 90601, 117209, 78205, 29261, 6441, 785, 57, 1, 837304, 1150297, 827521, 346453, 88909, 14065, 1297, 73, 1, 8610129, 12314329, 9507454, 4338214, 1253104, 234646, 28006, 2026, 91, 1
Offset: 1
Examples
The 6 permutations of {1,2,3} are: (1) (2) (3) (1) (2,3) (2) (1,3) (3) (1,2) (1,2,3) (1,3,2) so there are 10 elements in the first cycles, 7 in the second cycles and only 1 in the third cycles. Triangle T(n,k) begins: 1; 3, 1; 10, 7, 1; 45, 37, 13, 1; 236, 241, 101, 21, 1; 1505, 1661, 896, 226, 31, 1; 10914, 13301, 7967, 2612, 442, 43, 1; 90601, 117209, 78205, 29261, 6441, 785, 57, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Andrew V. Sills, Integer Partitions Probability Distributions, arXiv:1912.05306 [math.CO], 2019.
- Wikipedia, Permutation
Crossrefs
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, add(l[i]* x^i, i=1..nops(l)), add(binomial(n-1, j-1)* b(n-j, sort([l[], j]))*(j-1)!, j=1..n)) end: T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])): seq(T(n), n=1..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, l.x^Range[Length[l]], Sum[Binomial[n - 1, j - 1] b[n - j, Sort[Append[l, j]]] (j - 1)!, {j, 1, n}]]; T[n_] := Rest @ CoefficientList[b[n, {}], x]; Array[T, 12] // Flatten (* Jean-François Alcover, Mar 03 2020, after Alois P. Heinz *)
A145877 Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).
1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
Offset: 1
Comments
Examples
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23). Triangle starts: 1; 1, 1; 4, 0, 2; 15, 3, 0, 6; 76, 20, 0, 0, 24; 455, 105, 40, 0, 0, 120; 3186, 714, 420, 0, 0, 0, 720; 25487, 5845, 2688, 1260, 0, 0, 0, 5040; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
Crossrefs
Programs
-
Maple
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k),x=0,16) end do: T:= proc(n,k) options operator, arrow: factorial(n)*coeff(g[k],x,n) end proc: for n to 11 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Mathematica
Rest[Transpose[Table[Range[0, 16]! CoefficientList[ Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}],x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
Formula
E.g.f. for column k is (1-exp(-x^k/k))*exp( -sum(j=1..k-1, x^j/j ) ) / (1-x). - Vladeta Jovovic
A028418 Sum over all n! permutations of n letters of maximum cycle length.
1, 3, 13, 67, 411, 2911, 23563, 213543, 2149927, 23759791, 286370151, 3734929903, 52455166063, 788704078527, 12648867695311, 215433088624351, 3884791172487903, 73919882720901823, 1480542628345939807, 31128584449987511871, 685635398619169059391
Offset: 1
Keywords
Comments
Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - Geoffrey Critzer, Jan 09 2013
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 142 terms from Thomas Dybdahl Ahle)
- Ph. Flajolet and A. Odlyzko, Singularity analysis of generating functions, p. 22.
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!* b(n-j, max(m,j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=1..25); # Alois P. Heinz, May 14 2016
-
Mathematica
kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}]; a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax] (* Jean-François Alcover, Jun 22 2011, after e.g.f. *) a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* Michael Somos, Aug 19 2018 *)
Formula
E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)).
a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - Thomas Dybdahl Ahle, Aug 15 2011
a(n) = Sum_{k=1..n} k * A126074(n,k). - Alois P. Heinz, May 17 2016
Extensions
More terms from Vladeta Jovovic, Sep 19 2002
More terms from Thomas Dybdahl Ahle, Aug 15 2011
A097147 Total sum of minimum block sizes in all partitions of n-set.
1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!, `if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i))) end: a:= n-> g(n$2, 0): seq(a(n), n=1..30); # Alois P. Heinz, Mar 06 2015
-
Mathematica
Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *) g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0, Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]]; a[n_] := g[n, n, 0]; Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
Formula
E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).
Extensions
More terms from Max Alekseyev, Apr 29 2010
A097148 Total sum of maximum block sizes in all partitions of n-set.
1, 3, 10, 35, 136, 577, 2682, 13435, 72310, 414761, 2524666, 16239115, 109976478, 781672543, 5814797281, 45155050875, 365223239372, 3070422740989, 26780417126048, 241927307839731, 2260138776632752, 21805163768404127, 216970086170175575, 2224040977932468379
Offset: 1
Comments
Let M be the infinite lower triangular matrix given by A080510 and v the column vector [1,2,3,...] then M*v=A097148 (this sequence, as column vector). - Gary W. Adamson, Feb 24 2011
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, m, add( b(n-j, max(j, m))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=1..24); # Alois P. Heinz, Mar 02 2020, revised May 08 2024
-
Mathematica
Drop[ Range[0, 22]! CoefficientList[ Series[ Sum[E^(E^x - 1) - E^Sum[x^j/j!, {j, 1, k}], {k, 0, 22}], {x, 0, 22}], x], 1] (* Robert G. Wilson v, Aug 05 2004 *)
Formula
E.g.f.: Sum_{k>=0} (exp(exp(x)-1)-exp(Sum_{j=1..k} x^j/j!)).
Extensions
More terms from Robert G. Wilson v, Aug 05 2004
A097145 Total sum of minimum list sizes in all sets of lists of n-set, cf. A000262.
0, 1, 5, 25, 157, 1101, 9211, 85513, 900033, 10402633, 133059331, 1836961941, 27619253113, 444584808253, 7678546353843, 140944884572521, 2751833492404321, 56691826303303953, 1233793951629951043, 28191548364561422173, 676190806704598883241
Offset: 0
Examples
For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(n)= 24*4+24*1+12*2+12*1+1*1 = 157.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, m, add(j!* b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> `if`(n=0, 0, b(n, infinity)): seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Mathematica
b[n_, m_] := b[n, m] = If[n==0, m, Sum[j!*b[n-j, Min[m, j]]*Binomial[n-1, j - 1], {j, 1, n}]]; a[n_] := If[n==0, 0, b[n, Infinity]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 18 2017, after Alois P. Heinz *)
Formula
E.g.f.: Sum_{k>0} (exp(x^k/(1-x))-1).
Extensions
More terms from Max Alekseyev, Jul 04 2009
a(0)=0 prepended by Alois P. Heinz, May 10 2016
A232193 Numerators of the expected value of the length of a random cycle in a random n-permutation.
1, 3, 23, 55, 1901, 4277, 198721, 16083, 14097247, 4325321, 2132509567, 4527766399, 13064406523627, 905730205, 13325653738373, 362555126427073, 14845854129333883, 57424625956493833, 333374427829017307697, 922050973293317, 236387355420350878139797
Offset: 1
Comments
Examples
Expectations for n=1,... are 1/1, 3/2, 23/12, 55/24, 1901/720, 4277/1440, 198721/60480, 16083/4480, ... = A232193/A232248 For n=3 there are 6 permutations. We have probability 1/6 of selecting (1)(2)(3) and the cycle size is 1. We have probability 3/6 of selecting a permutation with cycle type (1)(23) and (on average) the cycle length is 3/2. We have probability 2/6 of selecting a permutation of the form (123) and the cycle size is 3. 1/6*1 + 3/6*3/2 + 2/6*3 = 23/12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..250
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j *b(n-i*j, i-1) *x^j, j=0..n/i)))) end: a:= n->numer((p->add(coeff(p, x, i)/i, i=1..n))(b(n$2))/(n-1)!): seq(a(n), n=1..30); # Alois P. Heinz, Nov 21 2013 # second Maple program: a:= n-> numer(add(abs(combinat[stirling1](n, i))/i, i=1..n)/(n-1)!): seq(a(n), n=1..30); # Alois P. Heinz, Nov 23 2013
-
Mathematica
Table[Numerator[Total[Map[Total[#]!/Product[#[[i]],{i,1,Length[#]}]/Apply[Times,Table[Count[#,k]!,{k,1,Max[#]}]]/(Total[#]-1)!/Length[#]&,Partitions[n]]]],{n,1,25}]
Formula
a(n) = Numerator( 1/(n-1)! * Sum_{i=1..n} A132393(n,i)/i ). - Alois P. Heinz, Nov 23 2013
A097146 Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262.
0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085
Offset: 0
Examples
For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..444
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, m, add(j!* b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
-
Mathematica
b[n_, m_] := b[n, m] = If[n == 0, m, Sum[j! b[n-j, Max[m, j]] Binomial[n-1, j-1], {j, 1, n}]]; a[n_] := b[n, 0]; a /@ Range[0, 25] (* Jean-François Alcover, Nov 05 2020, after Alois P. Heinz *)
-
PARI
N=50; x='x+O('x^N); egf=exp(x/(1-x))*sum(k=1,N, (1-exp(x^k/(x-1))) ); Vec( serlaplace(egf) ) /* show terms */
Formula
E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))).
Extensions
a(0)=0 prepended by Alois P. Heinz, May 10 2016
A208231 Sum of the minimum cycle length over all functions f:{1,2,...,n}->{1,2,...,n} (endofunctions).
0, 1, 5, 37, 373, 4761, 73601, 1336609, 27888281, 657386305, 17276807089, 500876786301, 15879053677697, 546470462226313, 20288935994319929, 808320431258439121, 34397370632215764001, 1557106493482564625793, 74713970491718324746529, 3787792171563440619543133, 202314171910557294992453009
Offset: 0
Keywords
Comments
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!* b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n)) end: a:= n-> add(b(j$2)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..25); # Alois P. Heinz, May 20 2016
-
Mathematica
nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Apply[Plus,Table[Range[0,nn]!CoefficientList[Series[Exp[Sum[t^i/i,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]]
Comments
Examples
Links
Crossrefs
Programs
Haskell
Maple
Mathematica
PARI
Formula