cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319375 Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by decreasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 35, 17, 7, 1, 136, 76, 36, 11, 1, 577, 357, 186, 81, 16, 1, 2682, 1737, 1023, 512, 162, 22, 1, 13435, 8997, 5867, 3151, 1345, 295, 29, 1, 72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1, 414761, 289253, 211888, 133853, 72973, 29503, 6676, 796, 46, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 07 2018

Keywords

Examples

			The 5 set partitions of {1,2,3} are:
  1   |2  |3
  12  |3
  13  |2
  23  |1
  123
so there are 10 elements in the first (largest) blocks, 4 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
      1;
      3,     1;
     10,     4,     1;
     35,    17,     7,     1;
    136,    76,    36,    11,     1;
    577,   357,   186,    81,    16,    1;
   2682,  1737,  1023,   512,   162,   22,   1;
  13435,  8997,  5867,  3151,  1345,  295,  29,  1;
  72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1;
  ...
		

Crossrefs

Row sums give A070071.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*
          x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
          b(n-j, sort([l[], j])), j=1..n))
        end:
    T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
    seq(T(n), n=1..12);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
           combinat[multinomial](n, i$j, n-i*j)/j!*
          b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
        end:
    T:= (n, k)-> b(n$2, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 02 2020
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
    Array[T, 12] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)

A097147 Total sum of minimum block sizes in all partitions of n-set.

Original entry on oeis.org

1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
Offset: 1

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!,
          `if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i)))
        end:
    a:= n-> g(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 06 2015
  • Mathematica
    Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1]  (* Geoffrey Critzer, Jan 10 2013 *)
    g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0,
         Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]];
    a[n_] := g[n, n, 0];
    Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).

Extensions

More terms from Max Alekseyev, Apr 29 2010

A097145 Total sum of minimum list sizes in all sets of lists of n-set, cf. A000262.

Original entry on oeis.org

0, 1, 5, 25, 157, 1101, 9211, 85513, 900033, 10402633, 133059331, 1836961941, 27619253113, 444584808253, 7678546353843, 140944884572521, 2751833492404321, 56691826303303953, 1233793951629951043, 28191548364561422173, 676190806704598883241
Offset: 0

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Examples

			For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(n)= 24*4+24*1+12*2+12*1+1*1 = 157.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
          b(n-j, min(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> `if`(n=0, 0, b(n, infinity)):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n==0, m, Sum[j!*b[n-j, Min[m, j]]*Binomial[n-1, j - 1], {j, 1, n}]]; a[n_] := If[n==0, 0, b[n, Infinity]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 18 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>0} (exp(x^k/(1-x))-1).

Extensions

More terms from Max Alekseyev, Jul 04 2009
a(0)=0 prepended by Alois P. Heinz, May 10 2016

A097146 Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262.

Original entry on oeis.org

0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085
Offset: 0

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Examples

			For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
          b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, m, Sum[j! b[n-j, Max[m, j]] Binomial[n-1, j-1], {j, 1, n}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 05 2020, after Alois P. Heinz *)
  • PARI
    N=50; x='x+O('x^N);
    egf=exp(x/(1-x))*sum(k=1,N, (1-exp(x^k/(x-1))) );
    Vec( serlaplace(egf) ) /* show terms */

Formula

E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))).

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016

A372649 Total sum over all partitions of [n] of the number of maximal blocks.

Original entry on oeis.org

0, 1, 3, 7, 21, 71, 293, 1268, 6107, 31123, 170745, 998966, 6212627, 40854360, 283290348, 2059884614, 15667307457, 124266461587, 1025342179759, 8784261413616, 78003593175261, 716854898767936, 6808817431686858, 66754426111124686, 674754718441688851
Offset: 0

Views

Author

Alois P. Heinz, May 08 2024

Keywords

Examples

			a(3) = 7 = 3 + 1 + 1 + 1 + 1: 1|2|3, 1|23, 12|3, 13|2, 123.
a(4) = 21 = 1+1+1+2+1+1+2+1+2+1+1+1+1+1+4: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t,
          add(binomial(n-1, j-1)*b(n-j, max(j, m),
         `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, t,
       Sum[Binomial[n - 1, j - 1]*b[n - j, Max[j, m],
       If[j > m, 1, If[j == m, t + 1, t]]], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 10 2024, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A372722(n,k).
Showing 1-5 of 5 results.