A319298
Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by increasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 7, 7, 1, 21, 25, 13, 1, 66, 101, 71, 21, 1, 258, 366, 396, 166, 31, 1, 1079, 1555, 1877, 1247, 337, 43, 1, 4987, 7099, 9199, 7855, 3305, 617, 57, 1, 25195, 34627, 47371, 47245, 27085, 7681, 1045, 73, 1, 136723, 184033, 253108, 284968, 203278, 79756, 16126, 1666, 91, 1
Offset: 1
The 5 set partitions of {1,2,3} are:
1 |2 |3
1 |23
2 |13
3 |12
123
so there are 7 elements in the first (smallest) blocks, 7 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
1;
3, 1;
7, 7, 1;
21, 25, 13, 1;
66, 101, 71, 21, 1;
258, 366, 396, 166, 31, 1;
1079, 1555, 1877, 1247, 337, 43, 1;
4987, 7099, 9199, 7855, 3305, 617, 57, 1;
25195, 34627, 47371, 47245, 27085, 7681, 1045, 73, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
T:= (n, k)-> b(n, 1, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 02 2020
-
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)
A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A097148
Total sum of maximum block sizes in all partitions of n-set.
Original entry on oeis.org
1, 3, 10, 35, 136, 577, 2682, 13435, 72310, 414761, 2524666, 16239115, 109976478, 781672543, 5814797281, 45155050875, 365223239372, 3070422740989, 26780417126048, 241927307839731, 2260138776632752, 21805163768404127, 216970086170175575, 2224040977932468379
Offset: 1
-
b:= proc(n, m) option remember; `if`(n=0, m, add(
b(n-j, max(j, m))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Mar 02 2020, revised May 08 2024
-
Drop[ Range[0, 22]! CoefficientList[ Series[ Sum[E^(E^x - 1) - E^Sum[x^j/j!, {j, 1, k}], {k, 0, 22}], {x, 0, 22}], x], 1] (* Robert G. Wilson v, Aug 05 2004 *)
A333059
Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 4, 17, 76, 357, 1737, 8997, 49420, 289253, 1793221, 11727861, 80576965, 579781009, 4356513727, 34118896917, 277963716808, 2351740613433, 20630800971825, 187374815249205, 1759353644746663, 17055176943817785, 170477858336708555, 1754992340756441973
Offset: 2
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 2)[2]:
seq(a(n), n=2..24);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0},
Sum[Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[2, 24] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
A333060
Number of entries in the third blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 7, 36, 186, 1023, 5867, 34744, 211888, 1343046, 8896185, 61801182, 449917898, 3425580850, 27183592435, 224196765392, 1917038645772, 16963064269986, 155112925687673, 1464150720422785, 14253033440621462, 142967758696293317, 1476398153663677539
Offset: 3
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 3)[2]:
seq(a(n), n=3..24);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0},
Sum[Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 3][[2]];
a /@ Range[3, 24] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
A333061
Number of entries in the fourth blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 11, 81, 512, 3151, 20071, 133853, 924320, 6551293, 47529561, 354259153, 2725545695, 21741995463, 180198265559, 1551865576121, 13865702570254, 128238585735637, 1224733005946425, 12053244176971825, 122035994844818345, 1269623551116437475, 13561114665253219451
Offset: 4
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 4)[2]:
seq(a(n), n=4..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0},
Sum[Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 4][[2]];
a /@ Range[4, 25] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
A333062
Number of entries in the fifth blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 16, 162, 1345, 10096, 72973, 531015, 3984762, 30987321, 248303940, 2036778980, 17044330217, 145588640408, 1272940217747, 11434350878640, 105849240653792, 1011701166471075, 9987958951272492, 101765834737586068, 1068365602976497915, 11534318293877771406
Offset: 5
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 5)[2]:
seq(a(n), n=5..25);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[
Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 5][[2]];
a /@ Range[5, 25] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
A333063
Number of entries in the sixth blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 22, 295, 3145, 29503, 256565, 2144517, 17743090, 148599335, 1276302900, 11282648837, 102385155537, 949462521827, 8967298797097, 86161326118467, 843025151446964, 8418457337349711, 86033922399717781, 902026616406147607, 9718711403938257151
Offset: 6
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 6)[2]:
seq(a(n), n=6..25);
A333064
Number of entries in the seventh blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 29, 499, 6676, 77078, 810470, 8016373, 76334142, 713507667, 6658565009, 62882380589, 606149817728, 5983648334738, 60440402586898, 622934996801505, 6532386995235676, 69575530733726891, 752420279343383619, 8269751757387345271, 92538014365261646366
Offset: 7
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 7)[2]:
seq(a(n), n=7..26);
A333065
Number of entries in the eighth blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
Original entry on oeis.org
1, 37, 796, 13091, 183074, 2300949, 26869727, 298009584, 3190196105, 33408754043, 346447486658, 3596858467639, 37729664292626, 402420037089997, 4378064125023471, 48598561597491856, 549602546782048959, 6318831653757436761, 73723789208978689966
Offset: 8
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 8)[2]:
seq(a(n), n=8..26);
Showing 1-10 of 12 results.
Comments