cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A070071 a(n) = n*B(n), where B(n) are the Bell numbers, A000110.

Original entry on oeis.org

0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0

Views

Author

Karol A. Penson, Apr 19 2002

Keywords

Comments

a(n) is the total number of successions among all partitions of {1,2,...,n+1}; a succession is a pair (i,i+1) of consecutive integers lying in a block. For example, a(3)=15 because {1,2,3,4} has 6 partitions with 1 succession - 1/2/34, 1/23/4, 12/3/4, 14/23, 134/2, 124/3, 3 partitions with 2 successions - 1/234, 123/4, 12/34 and 1 partition with 3 successions - 1234. Thus a(3) = 6*1 + 3*2 + 1*3 = 15. - Augustine O. Munagi, Jul 01 2008
a(n) is the number of occurrences of integers in a list of all partitions of the set {1,...,n}. For example, the list 123, 1/23, 2/13, 3/12, 1/2/3 of all partitions of the set {1,2,3} requires 15 occurrences of integers each belonging to that set. [From Michael Hardy (hardy(AT)math.umn.edu), Nov 08 2008]
The bijection between the two foregoing characterizations is as follows: Fix x in {1,2,...,n} and associate x with the succession (x,x+1) which appears in some partitions of {1,2,...,n+1}. Replace x,x+1 by x and partition the n-set {1,2,...,x,x+2,...,n+1}, giving B(n) partitions. Thus the succession (x,x+1) occurs among partitions of {1,2,...,n+1} exactly B(n) times. - Augustine O. Munagi, Jun 02 2010

Crossrefs

Programs

  • Magma
    [n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
    Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
    Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
  • PARI
    a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
    
  • Sage
    [bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
    

Formula

E.g.f: x*exp(x)*exp(exp(x)-1).
Sum_{k=1..n} n*binomial(n-1, k-1)*Bell(n-k), n >= 2. - Zerinvary Lajos, Nov 22 2006
a(n) ~ n^(n+1) * exp(n/LambertW(n)-1-n) / (sqrt(1+LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{k=1..n} k * A175757(n,k). - Alois P. Heinz, Mar 03 2020
a(n) = Sum_{j=0..n} n * Stirling2(n,j). - Detlef Meya, Apr 11 2024

A319375 Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by decreasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 3, 1, 10, 4, 1, 35, 17, 7, 1, 136, 76, 36, 11, 1, 577, 357, 186, 81, 16, 1, 2682, 1737, 1023, 512, 162, 22, 1, 13435, 8997, 5867, 3151, 1345, 295, 29, 1, 72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1, 414761, 289253, 211888, 133853, 72973, 29503, 6676, 796, 46, 1
Offset: 1

Views

Author

Alois P. Heinz, Dec 07 2018

Keywords

Examples

			The 5 set partitions of {1,2,3} are:
  1   |2  |3
  12  |3
  13  |2
  23  |1
  123
so there are 10 elements in the first (largest) blocks, 4 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
      1;
      3,     1;
     10,     4,     1;
     35,    17,     7,     1;
    136,    76,    36,    11,     1;
    577,   357,   186,    81,    16,    1;
   2682,  1737,  1023,   512,   162,   22,   1;
  13435,  8997,  5867,  3151,  1345,  295,  29,  1;
  72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1;
  ...
		

Crossrefs

Row sums give A070071.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*
          x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
          b(n-j, sort([l[], j])), j=1..n))
        end:
    T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
    seq(T(n), n=1..12);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
           combinat[multinomial](n, i$j, n-i*j)/j!*
          b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
        end:
    T:= (n, k)-> b(n$2, k)[2]:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Mar 02 2020
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
    Array[T, 12] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)

A097147 Total sum of minimum block sizes in all partitions of n-set.

Original entry on oeis.org

1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
Offset: 1

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!,
          `if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i)))
        end:
    a:= n-> g(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 06 2015
  • Mathematica
    Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1]  (* Geoffrey Critzer, Jan 10 2013 *)
    g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0,
         Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]];
    a[n_] := g[n, n, 0];
    Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).

Extensions

More terms from Max Alekseyev, Apr 29 2010

A332942 Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 7, 25, 101, 366, 1555, 7099, 34627, 184033, 1059972, 6425992, 41266681, 280938451, 2009636335, 15025372685, 117386912433, 956458929950, 8104399834719, 71244441818927, 648761935841876, 6110827367541999, 59454153443971106, 596654820386392152
Offset: 2

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=2 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 2)[2]:
    seq(a(n), n=2..24);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0 {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
    a[n_] := b[n, 1, 2][[2]];
    a /@ Range[2, 24] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)

A332943 Number of entries in the third blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 13, 71, 396, 1877, 9199, 47371, 253108, 1420475, 8598976, 55100124, 369764734, 2614650820, 19473708445, 151503397725, 1226996194292, 10339319950504, 90530421514787, 821670728202320, 7714779905351852, 74815825933883534, 748526174347790448, 7717807072187843156
Offset: 3

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=3 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 3)[2]:
    seq(a(n), n=3..25);

A332944 Number of entries in the fourth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 21, 166, 1247, 7855, 47245, 284968, 1741235, 10782872, 69537976, 471717130, 3336898255, 24584784957, 189704257763, 1530649634720, 12849873769593, 111945035887787, 1011184665775833, 9458811859041042, 91480934118104305, 913112230809837136, 9391472034599656856
Offset: 4

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=4 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 4)[2]:
    seq(a(n), n=4..25);

A332945 Number of entries in the fifth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 31, 337, 3305, 27085, 203278, 1470470, 10525307, 74735025, 534251602, 3917281240, 29620189877, 230717097457, 1858373700800, 15544789470865, 135021858204377, 1215283222207344, 11317462847981403, 108929278516177839, 1082642589072326140, 11099778977689173356
Offset: 5

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=5 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 5)[2]:
    seq(a(n), n=5..25);

A332946 Number of entries in the sixth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 43, 617, 7681, 79756, 741665, 6467891, 54658254, 451897330, 3685879069, 30091146181, 248749105815, 2091117462980, 17933165800591, 157654535847037, 1426401197217090, 13303368764700743, 127934361462621048, 1268098183967052868, 12948542410221048226
Offset: 6

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=6 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 6)[2]:
    seq(a(n), n=6..25);

A332947 Number of entries in the seventh blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 57, 1045, 16126, 207131, 2351933, 24592218, 244969609, 2361155669, 22194089013, 205472269667, 1894376413748, 17523281149447, 163348288354057, 1541060427442896, 14781379209476531, 144692817107094283, 1449416720608086968, 14882752251954912426
Offset: 7

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=7 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 7)[2]:
    seq(a(n), n=7..25);

A332948 Number of entries in the eighth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.

Original entry on oeis.org

1, 73, 1666, 31241, 486377, 6638568, 82413787, 961757669, 10756109317, 116409307679, 1228840258412, 12766418662681, 131564790987337, 1352403410824806, 13925656629847559, 144227711099572501, 1508401366805906552, 15986784485974156076, 172225656206792090516
Offset: 8

Views

Author

Alois P. Heinz, Mar 03 2020

Keywords

Crossrefs

Column k=8 of A319298.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
          add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
          max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
        end:
    a:= n-> b(n, 1, 8)[2]:
    seq(a(n), n=8..26);
Showing 1-10 of 13 results. Next