A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A319375
Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by decreasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 10, 4, 1, 35, 17, 7, 1, 136, 76, 36, 11, 1, 577, 357, 186, 81, 16, 1, 2682, 1737, 1023, 512, 162, 22, 1, 13435, 8997, 5867, 3151, 1345, 295, 29, 1, 72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1, 414761, 289253, 211888, 133853, 72973, 29503, 6676, 796, 46, 1
Offset: 1
The 5 set partitions of {1,2,3} are:
1 |2 |3
12 |3
13 |2
23 |1
123
so there are 10 elements in the first (largest) blocks, 4 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
1;
3, 1;
10, 4, 1;
35, 17, 7, 1;
136, 76, 36, 11, 1;
577, 357, 186, 81, 16, 1;
2682, 1737, 1023, 512, 162, 22, 1;
13435, 8997, 5867, 3151, 1345, 295, 29, 1;
72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
T:= (n, k)-> b(n$2, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 02 2020
-
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
Array[T, 12] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)
A097147
Total sum of minimum block sizes in all partitions of n-set.
Original entry on oeis.org
1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
Offset: 1
-
g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!,
`if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i)))
end:
a:= n-> g(n$2, 0):
seq(a(n), n=1..30); # Alois P. Heinz, Mar 06 2015
-
Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *)
g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0,
Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]];
a[n_] := g[n, n, 0];
Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
A332942
Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 7, 25, 101, 366, 1555, 7099, 34627, 184033, 1059972, 6425992, 41266681, 280938451, 2009636335, 15025372685, 117386912433, 956458929950, 8104399834719, 71244441818927, 648761935841876, 6110827367541999, 59454153443971106, 596654820386392152
Offset: 2
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 2)[2]:
seq(a(n), n=2..24);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0 {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
a[n_] := b[n, 1, 2][[2]];
a /@ Range[2, 24] (* Jean-François Alcover, Jan 06 2021, after Alois P. Heinz *)
A332943
Number of entries in the third blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 13, 71, 396, 1877, 9199, 47371, 253108, 1420475, 8598976, 55100124, 369764734, 2614650820, 19473708445, 151503397725, 1226996194292, 10339319950504, 90530421514787, 821670728202320, 7714779905351852, 74815825933883534, 748526174347790448, 7717807072187843156
Offset: 3
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 3)[2]:
seq(a(n), n=3..25);
A332944
Number of entries in the fourth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 21, 166, 1247, 7855, 47245, 284968, 1741235, 10782872, 69537976, 471717130, 3336898255, 24584784957, 189704257763, 1530649634720, 12849873769593, 111945035887787, 1011184665775833, 9458811859041042, 91480934118104305, 913112230809837136, 9391472034599656856
Offset: 4
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 4)[2]:
seq(a(n), n=4..25);
A332945
Number of entries in the fifth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 31, 337, 3305, 27085, 203278, 1470470, 10525307, 74735025, 534251602, 3917281240, 29620189877, 230717097457, 1858373700800, 15544789470865, 135021858204377, 1215283222207344, 11317462847981403, 108929278516177839, 1082642589072326140, 11099778977689173356
Offset: 5
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 5)[2]:
seq(a(n), n=5..25);
A332946
Number of entries in the sixth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 43, 617, 7681, 79756, 741665, 6467891, 54658254, 451897330, 3685879069, 30091146181, 248749105815, 2091117462980, 17933165800591, 157654535847037, 1426401197217090, 13303368764700743, 127934361462621048, 1268098183967052868, 12948542410221048226
Offset: 6
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 6)[2]:
seq(a(n), n=6..25);
A332947
Number of entries in the seventh blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 57, 1045, 16126, 207131, 2351933, 24592218, 244969609, 2361155669, 22194089013, 205472269667, 1894376413748, 17523281149447, 163348288354057, 1541060427442896, 14781379209476531, 144692817107094283, 1449416720608086968, 14882752251954912426
Offset: 7
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 7)[2]:
seq(a(n), n=7..25);
A332948
Number of entries in the eighth blocks of all set partitions of [n] when blocks are ordered by increasing lengths.
Original entry on oeis.org
1, 73, 1666, 31241, 486377, 6638568, 82413787, 961757669, 10756109317, 116409307679, 1228840258412, 12766418662681, 131564790987337, 1352403410824806, 13925656629847559, 144227711099572501, 1508401366805906552, 15986784485974156076, 172225656206792090516
Offset: 8
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 8)[2]:
seq(a(n), n=8..26);
Showing 1-10 of 13 results.
Comments