A270701
Total sum T(n,k) of the sizes of all blocks with maximal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 3, 2, 4, 9, 5, 9, 16, 30, 15, 25, 41, 67, 112, 52, 82, 127, 195, 299, 463, 203, 307, 456, 670, 979, 1429, 2095, 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279, 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267, 21147, 29427, 40338, 54692, 73561, 98367, 131007, 174029, 230884, 306298
Offset: 1
Row n=3 is [2, 4, 9] = [0+0+0+1+1, 0+2+1+0+1, 3+1+2+2+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
: 1;
: 1, 3;
: 2, 4, 9;
: 5, 9, 16, 30;
: 15, 25, 41, 67, 112;
: 52, 82, 127, 195, 299, 463;
: 203, 307, 456, 670, 979, 1429, 2095;
: 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279;
: 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267;
-
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
T:= (n, k)-> b(n, 0, max(0, 1+n-k))[2]:
seq(seq(T(n, k), k=1..n), n=1..12);
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m+1, 0, Function[p, p + If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[ n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t < 0, t, If[t > 0, t-1, 0] ]]]]], {j, 1, m+1}]];
T[n_, k_] := b[n, 0, Max[0, 1+n-k]][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
A270702
Total sum T(n,k) of the sizes of all blocks with minimal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 9, 4, 2, 30, 16, 9, 5, 112, 67, 41, 25, 15, 463, 299, 195, 127, 82, 52, 2095, 1429, 979, 670, 456, 307, 203, 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877, 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140, 306298, 230884, 174029, 131007, 98367, 73561, 54692, 40338, 29427, 21147
Offset: 1
Row n=3 is [9, 4, 2] = [3+2+2+1+1, 0+0+1+2+1, 0+1+0+0+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
: 1;
: 3, 1;
: 9, 4, 2;
: 30, 16, 9, 5;
: 112, 67, 41, 25, 15;
: 463, 299, 195, 127, 82, 52;
: 2095, 1429, 979, 670, 456, 307, 203;
: 10279, 7307, 5204, 3702, 2623, 1845, 1283, 877;
: 54267, 39848, 29278, 21485, 15717, 11437, 8257, 5894, 4140;
-
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
T:= (n, k)-> b(n, 0, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12);
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0] ][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
T[n_, k_] := b[n, 0, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
A270236
Triangle T(n,p) read by rows: the number of occurrences of p in the restricted growth functions of length n.
Original entry on oeis.org
1, 3, 1, 9, 5, 1, 30, 21, 8, 1, 112, 88, 47, 12, 1, 463, 387, 253, 97, 17, 1, 2095, 1816, 1345, 675, 184, 23, 1, 10279, 9123, 7304, 4418, 1641, 324, 30, 1, 54267, 48971, 41193, 28396, 13276, 3645, 536, 38, 1, 306298, 279855, 243152, 183615, 102244, 36223, 7473, 842, 47, 1
Offset: 1
A283424
Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
Offset: 0
T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
1;
2, 1;
5, 3, 1;
15, 10, 4, 1;
52, 37, 17, 5, 1;
203, 151, 76, 26, 6, 1;
877, 674, 362, 137, 37, 7, 1;
4140, 3263, 1842, 750, 225, 50, 8, 1;
21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
...
Columns k=0-10 give:
A000110(n+1),
A138378 or
A005493(n-1),
A124325,
A288785,
A288786,
A288787,
A288788,
A288789,
A288790,
A288791,
A288792.
-
T:= proc(n, k) option remember; `if`(k>n, 0,
binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
end:
seq(seq(T(n, k), k=0..n), n=0..14);
-
T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)
A319298
Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by increasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 7, 7, 1, 21, 25, 13, 1, 66, 101, 71, 21, 1, 258, 366, 396, 166, 31, 1, 1079, 1555, 1877, 1247, 337, 43, 1, 4987, 7099, 9199, 7855, 3305, 617, 57, 1, 25195, 34627, 47371, 47245, 27085, 7681, 1045, 73, 1, 136723, 184033, 253108, 284968, 203278, 79756, 16126, 1666, 91, 1
Offset: 1
The 5 set partitions of {1,2,3} are:
1 |2 |3
1 |23
2 |13
3 |12
123
so there are 7 elements in the first (smallest) blocks, 7 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
1;
3, 1;
7, 7, 1;
21, 25, 13, 1;
66, 101, 71, 21, 1;
258, 366, 396, 166, 31, 1;
1079, 1555, 1877, 1247, 337, 43, 1;
4987, 7099, 9199, 7855, 3305, 617, 57, 1;
25195, 34627, 47371, 47245, 27085, 7681, 1045, 73, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(b(n-i*j, i+1,
max(0, t-j))/j!*combinat[multinomial](n, i$j, n-i*j)), j=0..n/i)))
end:
T:= (n, k)-> b(n, 1, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 02 2020
-
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)
A319375
Number T(n,k) of entries in the k-th blocks of all set partitions of [n] when blocks are ordered by decreasing lengths (and increasing smallest elements); triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 10, 4, 1, 35, 17, 7, 1, 136, 76, 36, 11, 1, 577, 357, 186, 81, 16, 1, 2682, 1737, 1023, 512, 162, 22, 1, 13435, 8997, 5867, 3151, 1345, 295, 29, 1, 72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1, 414761, 289253, 211888, 133853, 72973, 29503, 6676, 796, 46, 1
Offset: 1
The 5 set partitions of {1,2,3} are:
1 |2 |3
12 |3
13 |2
23 |1
123
so there are 10 elements in the first (largest) blocks, 4 in the second blocks and only 1 in the third blocks.
Triangle T(n,k) begins:
1;
3, 1;
10, 4, 1;
35, 17, 7, 1;
136, 76, 36, 11, 1;
577, 357, 186, 81, 16, 1;
2682, 1737, 1023, 512, 162, 22, 1;
13435, 8997, 5867, 3151, 1345, 295, 29, 1;
72310, 49420, 34744, 20071, 10096, 3145, 499, 37, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0, add(l[-i]*
x^i, i=1..nops(l)), add(binomial(n-1, j-1)*
b(n-j, sort([l[], j])), j=1..n))
end:
T:= n-> (p-> (seq(coeff(p, x, i), i=1..n)))(b(n, [])):
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
T:= (n, k)-> b(n$2, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Mar 02 2020
-
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[-i]] x^i, {i, 1, Length[l]}], Sum[ Binomial[n-1, j-1] b[n-j, Sort[Append[l, j]]], {j, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, {}]];
Array[T, 12] // Flatten (* Jean-François Alcover, Dec 28 2018, after Alois P. Heinz *)
A286416
Number T(n,k) of entries in the k-th last blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 8, 6, 1, 24, 25, 10, 1, 83, 98, 63, 15, 1, 324, 399, 338, 135, 21, 1, 1400, 1746, 1727, 980, 257, 28, 1, 6609, 8271, 8874, 6426, 2455, 448, 36, 1, 33758, 42284, 47191, 40334, 20506, 5474, 730, 45, 1, 185136, 231939, 263458, 250839, 158827, 57239, 11128, 1128, 55, 1
Offset: 1
T(3,2) = 6 because the number of entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+2+2+1+1 = 6.
Triangle T(n,k) begins:
1;
3, 1;
8, 6, 1;
24, 25, 10, 1;
83, 98, 63, 15, 1;
324, 399, 338, 135, 21, 1;
1400, 1746, 1727, 980, 257, 28, 1;
6609, 8271, 8874, 6426, 2455, 448, 36, 1;
...
A175757
Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
1;
2, 1;
6, 3, 1;
20, 12, 4, 1;
75, 50, 20, 5, 1;
312, 225, 100, 30, 6, 1;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^j])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 24 2017
-
Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid
A346772
Total sum of block indices of the elements over all partitions of [n].
Original entry on oeis.org
0, 1, 5, 22, 100, 482, 2475, 13527, 78476, 481687, 3117962, 21218851, 151387882, 1129430737, 8790433999, 71222812912, 599577147056, 5235054113412, 47331036294905, 442462325254995, 4270909302907430, 42514043248222709, 435920900603529954, 4599155199953703373
Offset: 0
a(3) = 22 = 3 + 4 + 4 + 5 + 6, summing block indices 111, 112, 121, 122, 123 of the 5 partitions of [3]: 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add(
(p-> p+[0, p[1]*j])(b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25);
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[
Function[p, p+{0, p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
a[n_] := b[n, 0][[2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
A350175
Sum of the distinct block sizes over all partitions of [n].
Original entry on oeis.org
0, 1, 3, 13, 45, 196, 888, 4383, 22879, 129163, 768913, 4849912, 32202712, 224672241, 1640679589, 12517008985, 99484656169, 822410210044, 7055883373604, 62730142658947, 576984726864147, 5482889832932123, 53757450049841167, 543169144098559606, 5649499728403949184
Offset: 0
a(3) = 13 = 1*3 + 3*(1+2) + 1: 123, 1|23, 13|2, 12|3, 1|2|3.
-
b:= proc(n, i, c) option remember; `if`(n=0, c,
`if`(i<1, 0, add(b(n-j*i, i-1, c+i*signum(j))*
combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, c_] := b[n, i, c] = If[n == 0, c,
If[i < 1, 0, Sum[b[n - j*i, i - 1, c + i*Sign[j]]*
multinomial[n, Join[{n - i*j}, Table[i, {j}]]]/j!, {j, 0, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
Showing 1-10 of 12 results.
Next
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula