A270236 Triangle T(n,p) read by rows: the number of occurrences of p in the restricted growth functions of length n.
1, 3, 1, 9, 5, 1, 30, 21, 8, 1, 112, 88, 47, 12, 1, 463, 387, 253, 97, 17, 1, 2095, 1816, 1345, 675, 184, 23, 1, 10279, 9123, 7304, 4418, 1641, 324, 30, 1, 54267, 48971, 41193, 28396, 13276, 3645, 536, 38, 1, 306298, 279855, 243152, 183615, 102244, 36223, 7473, 842, 47, 1
Offset: 1
A070071 a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
Keywords
Comments
a(n) is the total number of successions among all partitions of {1,2,...,n+1}; a succession is a pair (i,i+1) of consecutive integers lying in a block. For example, a(3)=15 because {1,2,3,4} has 6 partitions with 1 succession - 1/2/34, 1/23/4, 12/3/4, 14/23, 134/2, 124/3, 3 partitions with 2 successions - 1/234, 123/4, 12/34 and 1 partition with 3 successions - 1234. Thus a(3) = 6*1 + 3*2 + 1*3 = 15. - Augustine O. Munagi, Jul 01 2008
a(n) is the number of occurrences of integers in a list of all partitions of the set {1,...,n}. For example, the list 123, 1/23, 2/13, 3/12, 1/2/3 of all partitions of the set {1,2,3} requires 15 occurrences of integers each belonging to that set. [From Michael Hardy (hardy(AT)math.umn.edu), Nov 08 2008]
The bijection between the two foregoing characterizations is as follows: Fix x in {1,2,...,n} and associate x with the succession (x,x+1) which appears in some partitions of {1,2,...,n+1}. Replace x,x+1 by x and partition the n-set {1,2,...,x,x+2,...,n+1}, giving B(n) partitions. Thus the succession (x,x+1) occurs among partitions of {1,2,...,n+1} exactly B(n) times. - Augustine O. Munagi, Jun 02 2010
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..574 (terms n=0..200 from Vincenzo Librandi)
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
Crossrefs
Programs
-
Magma
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
Maple
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007 with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007 a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
Mathematica
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n] Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *) Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
PARI
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
Sage
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
Formula
E.g.f: x*exp(x)*exp(exp(x)-1).
Sum_{k=1..n} n*binomial(n-1, k-1)*Bell(n-k), n >= 2. - Zerinvary Lajos, Nov 22 2006
a(n) ~ n^(n+1) * exp(n/LambertW(n)-1-n) / (sqrt(1+LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{k=1..n} k * A175757(n,k). - Alois P. Heinz, Mar 03 2020
a(n) = Sum_{j=0..n} n * Stirling2(n,j). - Detlef Meya, Apr 11 2024
A038561 Left-hand border of triangle A046937.
1, 2, 3, 8, 24, 83, 324, 1400, 6609, 33758, 185136, 1083233, 6726366, 44130128, 304741623, 2207682188, 16729947276, 132281116715, 1088831511000, 9311082630620, 82569723552561, 758057178490082, 7194283782101844, 70481938088367569
Offset: 0
Comments
For n>1: a(n) is the number of entries in the last blocks of all set partitions of [n]. a(3) = 8 because the number of entries in the last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 3+1+1+2+1 = 8. - Alois P. Heinz, May 08 2017
References
- H. W. Gould, A linear binomial recurrence and the Bell numbers and polynomials, preprint, 1998
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- R. K. Guy, Letters to N. J. A. Sloane, June-August 1968
Crossrefs
Programs
-
Haskell
a038561 = head . a046937_row -- Reinhard Zumkeller, Jan 06 2014
-
Maple
A038561List := proc(m) local A, P, n; A := [1,2]; P := [1]; for n from 1 to m - 2 do P := ListTools:-PartialSums([A[-1], op(P)]); A := [op(A), P[-1]] od; A end: A038561List(24); # Peter Luschny, Mar 24 2022
-
Mathematica
a[0, 0] = 1; a[1, 0] = 2; a[n_, 0] := a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; a[n_] := a[n, 0]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 06 2013 *)
Formula
G.f. A(x) satisfies: A(x) = 1 + x * (1 + A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, Jun 30 2020
A286232 Sum T(n,k) of the entries in the k-th last blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 5, 1, 19, 10, 1, 75, 57, 17, 1, 323, 285, 145, 26, 1, 1512, 1421, 975, 317, 37, 1, 7630, 7395, 5999, 2865, 616, 50, 1, 41245, 40726, 36183, 22411, 7315, 1094, 65, 1, 237573, 237759, 221689, 163488, 72581, 16630, 1812, 82, 1, 1451359, 1468162, 1405001, 1160764, 649723, 206249, 34425, 2840, 101, 1
Offset: 1
Examples
T(3,2) = 10 because the sum of the entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+4+1+2 = 10. Triangle T(n,k) begins: 1; 5, 1; 19, 10, 1; 75, 57, 17, 1; 323, 285, 145, 26, 1; 1512, 1421, 975, 317, 37, 1; 7630, 7395, 5999, 2865, 616, 50, 1; 41245, 40726, 36183, 22411, 7315, 1094, 65, 1; ...
Links
- Alois P. Heinz, Rows n = 1..100, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Mathematica
app[P_, n_] := Module[{P0}, Table[P0 = Append[P, {}]; AppendTo[P0[[i]], n]; If[Last[P0] == {}, Most[P0], P0], {i, 1, Length[P]+1}]]; setPartitions[n_] := setPartitions[n] = If[n == 1, {{{1}}}, Flatten[app[#, n]& /@ setPartitions[n-1], 1]]; T[n_, k_] := Select[setPartitions[n], Length[#] >= k&][[All, -k]] // Flatten // Total; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 21 2021 *)
A286433 Number of entries in the second last blocks of all set partitions of [n].
1, 6, 25, 98, 399, 1746, 8271, 42284, 231939, 1357128, 8427181, 55288860, 381798629, 2765917074, 20960284277, 165729739590, 1364153612299, 11665484410094, 103448316470723, 949739632313480, 9013431476894623, 88304011710168668, 891917738589610553
Offset: 2
Keywords
Examples
a(3) = 6 because the number of entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+2+2+1+1 = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..250
- Wikipedia, Partition of a set
Crossrefs
Column k=2 of A286416.
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula