A286416 Number T(n,k) of entries in the k-th last blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 3, 1, 8, 6, 1, 24, 25, 10, 1, 83, 98, 63, 15, 1, 324, 399, 338, 135, 21, 1, 1400, 1746, 1727, 980, 257, 28, 1, 6609, 8271, 8874, 6426, 2455, 448, 36, 1, 33758, 42284, 47191, 40334, 20506, 5474, 730, 45, 1, 185136, 231939, 263458, 250839, 158827, 57239, 11128, 1128, 55, 1
Offset: 1
Examples
T(3,2) = 6 because the number of entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+2+2+1+1 = 6. Triangle T(n,k) begins: 1; 3, 1; 8, 6, 1; 24, 25, 10, 1; 83, 98, 63, 15, 1; 324, 399, 338, 135, 21, 1; 1400, 1746, 1727, 980, 257, 28, 1; 6609, 8271, 8874, 6426, 2455, 448, 36, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Wikipedia, Partition of a set
Comments