A285362
Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 15, 12, 3, 60, 58, 28, 4, 262, 273, 185, 55, 5, 1243, 1329, 1094, 495, 96, 6, 6358, 6839, 6293, 3757, 1148, 154, 7, 34835, 37423, 36619, 26421, 11122, 2380, 232, 8, 203307, 217606, 219931, 180482, 96454, 28975, 4518, 333, 9, 1257913, 1340597, 1376929, 1230737, 787959, 308127, 67898, 7995, 460, 10
Offset: 1
T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Triangle T(n,k) begins:
1;
4, 2;
15, 12, 3;
60, 58, 28, 4;
262, 273, 185, 55, 5;
1243, 1329, 1094, 495, 96, 6;
6358, 6839, 6293, 3757, 1148, 154, 7;
34835, 37423, 36619, 26421, 11122, 2380, 232, 8;
...
Main diagonal and first lower diagonal give:
A000027,
A006000 (for n>0).
-
T:= proc(h) option remember; local b; b:=
proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p
+[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2])
end:
seq(T(n), n=1..12);
-
T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A185105
Number T(n,k) of entries in the k-th cycles of all permutations of {1,2,..,n}; each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements.
Original entry on oeis.org
1, 3, 1, 12, 5, 1, 60, 27, 8, 1, 360, 168, 59, 12, 1, 2520, 1200, 463, 119, 17, 1, 20160, 9720, 3978, 1177, 221, 23, 1, 181440, 88200, 37566, 12217, 2724, 382, 30, 1, 1814400, 887040, 388728, 135302, 34009, 5780, 622, 38, 1, 19958400, 9797760, 4385592, 1606446, 441383, 86029, 11378, 964, 47, 1
Offset: 1
The six permutations of n=3 in ordered cycle form are:
{ {1}, {2}, {3} }
{ {1}, {2, 3}, {} }
{ {1, 2}, {3}, {} }
{ {1, 2, 3}, {}, {}}
{ {1, 3, 2}, {}, {}}
{ {1, 3}, {2}, {} }
.
The lengths of the cycles in position k=1 sum to 12, those of the cycles in position k=2 sum to 5 and those of the cycles in position k=3 sum to 1.
Triangle begins:
1;
3, 1;
12, 5, 1;
60, 27, 8, 1;
360, 168, 59, 12, 1;
2520, 1200, 463, 119, 17, 1;
20160, 9720, 3978, 1177, 221, 23, 1;
181440, 88200, 37566, 12217, 2724, 382, 30, 1;
...
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
add((p-> p+coeff(p, x, 0)*j*x^i)(b(n-j, i+1))*
binomial(n-1, j-1)*(j-1)!, j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 1)):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 15 2017
-
Table[it = Join[RotateRight /@ ToCycles[#], Table[{}, {k}]] & /@ Permutations[Range[n]]; Tr[Length[Part[#, k]]& /@ it], {n, 7}, {k, n}]
(* Second program: *)
b[n_, i_] := b[n, i] = Expand[If[n==0, 1, Sum[Function[p, p + Coefficient[ p, x, 0]*j*x^i][b[n-j, i+1]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, 1]];
Array[T, 12] // Flatten (* Jean-François Alcover, May 30 2018, after Alois P. Heinz *)
A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A124427
Sum of the sizes of the blocks containing the element 1 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
0, 1, 3, 9, 30, 112, 463, 2095, 10279, 54267, 306298, 1838320, 11677867, 78207601, 550277003, 4055549053, 31224520322, 250547144156, 2090779592827, 18110124715919, 162546260131455, 1509352980864191, 14478981877739094, 143299752100925452, 1461455003961745247
Offset: 0
a(3)=9 because the 5 (=A000110(3)) set partitions of {1,2,3} are 123, 12|3, 13|2, 1|23 and 1|2|3 and 3+2+2+1+1=9.
-
with(combinat): seq(add(k*binomial(n-1,k-1)*bell(n-k),k=1..n),n=0..30);
-
Table[Sum[Binomial[n-1,k-1] * BellB[n-k] * k, {k,1,n}], {n,0,22}] (* Geoffrey Critzer, Jun 14 2013 *)
Flatten[{0, Table[(n-1)*BellB[n-1] + BellB[n], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 19 2016, after Vladeta Jovovic *)
A286416
Number T(n,k) of entries in the k-th last blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 3, 1, 8, 6, 1, 24, 25, 10, 1, 83, 98, 63, 15, 1, 324, 399, 338, 135, 21, 1, 1400, 1746, 1727, 980, 257, 28, 1, 6609, 8271, 8874, 6426, 2455, 448, 36, 1, 33758, 42284, 47191, 40334, 20506, 5474, 730, 45, 1, 185136, 231939, 263458, 250839, 158827, 57239, 11128, 1128, 55, 1
Offset: 1
T(3,2) = 6 because the number of entries in the second last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+2+2+1+1 = 6.
Triangle T(n,k) begins:
1;
3, 1;
8, 6, 1;
24, 25, 10, 1;
83, 98, 63, 15, 1;
324, 399, 338, 135, 21, 1;
1400, 1746, 1727, 980, 257, 28, 1;
6609, 8271, 8874, 6426, 2455, 448, 36, 1;
...
A346772
Total sum of block indices of the elements over all partitions of [n].
Original entry on oeis.org
0, 1, 5, 22, 100, 482, 2475, 13527, 78476, 481687, 3117962, 21218851, 151387882, 1129430737, 8790433999, 71222812912, 599577147056, 5235054113412, 47331036294905, 442462325254995, 4270909302907430, 42514043248222709, 435920900603529954, 4599155199953703373
Offset: 0
a(3) = 22 = 3 + 4 + 4 + 5 + 6, summing block indices 111, 112, 121, 122, 123 of the 5 partitions of [3]: 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0], add(
(p-> p+[0, p[1]*j])(b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25);
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[
Function[p, p+{0, p[[1]]*j}][b[n-1, Max[m, j]]], {j, 1, m+1}]];
a[n_] := b[n, 0][[2]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
A270529
Sum of the sizes of the (n+1)-th blocks in all set partitions of {1,2,...,2n+1}.
Original entry on oeis.org
1, 5, 47, 675, 13276, 334751, 10354804, 380797185, 16262852622, 792102157717, 43370872479317, 2638621340623857, 176656418678888190, 12910491906798508171, 1022900642521227415940, 87345042902079159197907, 7997120745886569461943400, 781580696472700788364550933
Offset: 0
a(1) = 5 = 0+1+1+2+1 = sum of the sizes of the second blocks in all A000110(3) = 5 set partitions of 3: 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, m, k) option remember; `if`(n=0, [1, 0], add((p->p+
`if`(j=k, [0, p[1]], 0))(b(n-1, max(m, j), k)), j=1..m+1))
end:
a:= n-> b(2*n+1, 0, n+1)[2]:
seq(a(n), n=0..20);
-
b[n_, m_, k_] := b[n, m, k] = If[n == 0, {1, 0}, Sum[# + If[j == k, {0, #[[1]]}, 0]&[b[n - 1, Max[m, j], k]], {j, 1, m + 1}]];
a[n_] := b[2*n + 1, 0, n + 1][[2]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
A270494
Sum of the sizes of the second blocks in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 5, 21, 88, 387, 1816, 9123, 48971, 279855, 1695902, 10856879, 73173016, 517597981, 3831970709, 29617983433, 238460465120, 1995828043987, 17333096360920, 155936489571399, 1451019052068763, 13945778132786915, 138259832617525950, 1412263078623261399
Offset: 2
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p->`if`(j<3, [p[1], p[2]+p[1]*x^j], p))(
b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> coeff(b(n, 0)[2], x, 2):
seq(a(n), n=2..25);
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 3, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n-1, Max[m, j]]], {j, 1, m + 1}]];
a[n_] := Coefficient[b[n, 0][[2]], x, 2];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
A270495
Sum of the sizes of the third blocks in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 8, 47, 253, 1345, 7304, 41193, 243152, 1506521, 9799547, 66844755, 477297022, 3560469469, 27692022408, 224128400923, 1884299045789, 16427961558365, 148293477761232, 1384008870213057, 13336887952918752, 132535336519342301, 1356662080571809755
Offset: 3
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p->`if`(j<4, [p[1], p[2]+p[1]*x^j], p))(
b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> coeff(b(n, 0)[2], x, 3):
seq(a(n), n=3..25);
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 4, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]];
a[n_] := Coefficient[b[n, 0][[2]], x, 3];
Table[a[n], {n, 3, 25}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
A270496
Sum of the sizes of the fourth blocks in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 12, 97, 675, 4418, 28396, 183615, 1211936, 8237223, 57944187, 422950882, 3206531728, 25247250641, 206313943476, 1747990803645, 15336960025775, 139187730958406, 1304967471569208, 12624893940830455, 125892638744630088, 1292581981392588771
Offset: 4
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p->`if`(j<5, [p[1], p[2]+p[1]*x^j], p))(
b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> coeff(b(n, 0)[2], x, 4):
seq(a(n), n=4..30);
-
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 5, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]];
a[n_] := Coefficient[b[n, 0][[2]], x, 4];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
Showing 1-10 of 16 results.
Comments