A270236 Triangle T(n,p) read by rows: the number of occurrences of p in the restricted growth functions of length n.
1, 3, 1, 9, 5, 1, 30, 21, 8, 1, 112, 88, 47, 12, 1, 463, 387, 253, 97, 17, 1, 2095, 1816, 1345, 675, 184, 23, 1, 10279, 9123, 7304, 4418, 1641, 324, 30, 1, 54267, 48971, 41193, 28396, 13276, 3645, 536, 38, 1, 306298, 279855, 243152, 183615, 102244, 36223, 7473, 842, 47, 1
Offset: 1
A285410 Sum of the entries in the (n+1)-th blocks of all set partitions of [2n+1].
1, 12, 185, 3757, 96454, 3018824, 111964040, 4813480830, 235727269842, 12967143328027, 792113203502422, 53224214308284463, 3902445739220008603, 310108348556403600064, 26551900616231571763742, 2437107937223749442138164, 238735439946016510599661488
Offset: 0
Keywords
Examples
a(1) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..345
- Wikipedia, Partition of a set
Programs
-
Maple
a:= proc(h) option remember; local b; b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> `if`(j=h+1, p+ [0, (2*h-n+2)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) end: b(2*h+1, 0)[2] end: seq(a(n), n=0..20);
-
Mathematica
a[h_] := a[h] = Module[{b}, b[0, ] = {1, 0}; b[n, m_] := b[n, m] = Sum[ If[j == h + 1, # + {0, (2*h - n + 2)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]; b[2*h + 1, 0][[2]]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
Formula
a(n) = A285362(2n+1,n+1).
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
Formula