cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A285362 Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 4, 2, 15, 12, 3, 60, 58, 28, 4, 262, 273, 185, 55, 5, 1243, 1329, 1094, 495, 96, 6, 6358, 6839, 6293, 3757, 1148, 154, 7, 34835, 37423, 36619, 26421, 11122, 2380, 232, 8, 203307, 217606, 219931, 180482, 96454, 28975, 4518, 333, 9, 1257913, 1340597, 1376929, 1230737, 787959, 308127, 67898, 7995, 460, 10
Offset: 1

Views

Author

Alois P. Heinz, Apr 17 2017

Keywords

Examples

			T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Triangle T(n,k) begins:
      1;
      4,     2;
     15,    12,     3;
     60,    58,    28,     4;
    262,   273,   185,    55,     5;
   1243,  1329,  1094,   495,    96,    6;
   6358,  6839,  6293,  3757,  1148,  154,   7;
  34835, 37423, 36619, 26421, 11122, 2380, 232, 8;
  ...
		

Crossrefs

Row sums give A000110(n) * A000217(n) = A105488(n+3).
Main diagonal and first lower diagonal give: A000027, A006000 (for n>0).
T(2n+1,n+1) gives A285410.

Programs

  • Maple
    T:= proc(h) option remember; local b; b:=
          proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p
            +[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1))
          end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2])
        end:
    seq(T(n), n=1..12);
  • Mathematica
    T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

A270529 Sum of the sizes of the (n+1)-th blocks in all set partitions of {1,2,...,2n+1}.

Original entry on oeis.org

1, 5, 47, 675, 13276, 334751, 10354804, 380797185, 16262852622, 792102157717, 43370872479317, 2638621340623857, 176656418678888190, 12910491906798508171, 1022900642521227415940, 87345042902079159197907, 7997120745886569461943400, 781580696472700788364550933
Offset: 0

Views

Author

Alois P. Heinz, Mar 18 2016

Keywords

Examples

			a(1) = 5 = 0+1+1+2+1 = sum of the sizes of the second blocks in all A000110(3) = 5 set partitions of 3: 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, k) option remember; `if`(n=0, [1, 0], add((p->p+
          `if`(j=k, [0, p[1]], 0))(b(n-1, max(m, j), k)), j=1..m+1))
        end:
    a:= n-> b(2*n+1, 0, n+1)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, m_, k_] := b[n, m, k] = If[n == 0, {1, 0}, Sum[# + If[j == k, {0, #[[1]]}, 0]&[b[n - 1, Max[m, j], k]], {j, 1, m + 1}]];
    a[n_] := b[2*n + 1, 0, n + 1][[2]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 23 2018, translated from Maple *)

Formula

a(n) = A270236(2n+1,n+1).
a(n) ~ 2^(2*n+1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^(n+1) * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, Mar 19 2016
Showing 1-2 of 2 results.