A270701
Total sum T(n,k) of the sizes of all blocks with maximal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 3, 2, 4, 9, 5, 9, 16, 30, 15, 25, 41, 67, 112, 52, 82, 127, 195, 299, 463, 203, 307, 456, 670, 979, 1429, 2095, 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279, 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267, 21147, 29427, 40338, 54692, 73561, 98367, 131007, 174029, 230884, 306298
Offset: 1
Row n=3 is [2, 4, 9] = [0+0+0+1+1, 0+2+1+0+1, 3+1+2+2+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
: 1;
: 1, 3;
: 2, 4, 9;
: 5, 9, 16, 30;
: 15, 25, 41, 67, 112;
: 52, 82, 127, 195, 299, 463;
: 203, 307, 456, 670, 979, 1429, 2095;
: 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279;
: 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267;
-
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
T:= (n, k)-> b(n, 0, max(0, 1+n-k))[2]:
seq(seq(T(n, k), k=1..n), n=1..12);
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m+1, 0, Function[p, p + If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[ n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t < 0, t, If[t > 0, t-1, 0] ]]]]], {j, 1, m+1}]];
T[n_, k_] := b[n, 0, Max[0, 1+n-k]][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)
A070071
a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
Original entry on oeis.org
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
-
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
A124427
Sum of the sizes of the blocks containing the element 1 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
0, 1, 3, 9, 30, 112, 463, 2095, 10279, 54267, 306298, 1838320, 11677867, 78207601, 550277003, 4055549053, 31224520322, 250547144156, 2090779592827, 18110124715919, 162546260131455, 1509352980864191, 14478981877739094, 143299752100925452, 1461455003961745247
Offset: 0
a(3)=9 because the 5 (=A000110(3)) set partitions of {1,2,3} are 123, 12|3, 13|2, 1|23 and 1|2|3 and 3+2+2+1+1=9.
-
with(combinat): seq(add(k*binomial(n-1,k-1)*bell(n-k),k=1..n),n=0..30);
-
Table[Sum[Binomial[n-1,k-1] * BellB[n-k] * k, {k,1,n}], {n,0,22}] (* Geoffrey Critzer, Jun 14 2013 *)
Flatten[{0, Table[(n-1)*BellB[n-1] + BellB[n], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 19 2016, after Vladeta Jovovic *)
A270703
Total sum of the sizes of all blocks with maximal element n in all set partitions of {1,2,...,2n-1}.
Original entry on oeis.org
1, 4, 41, 670, 15717, 492112, 19610565, 961547874, 56562256041, 3914022281500, 313638627550657, 28730918805512678, 2976543225606178893, 345587228510915829224, 44615408909143456529309, 6361213086726610526079402, 995709801367376369056571089
Offset: 1
a(2) = 4 = 0+2+1+0+1 = sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,3}: 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
`if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
[0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
`if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
end:
a:= n-> b(2*n-1, 0, n)[2]:
seq(a(n), n=1..20);
-
b[n_, m_, t_] := b[n, m, t] = If[n==0, {1, 0}, Sum[If[t==1 && j != m+1, 0, Function[p, p+If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t<0, t, If[t>0, t-1, 0]]]]]], {j, 1, m+1}]]; a[n_] := b[2*n-1, 0, n][[2]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
A270756
Total sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
3, 4, 9, 25, 82, 307, 1283, 5894, 29427, 158269, 910520, 5570737, 36071631, 246188196, 1764757189, 13246059237, 103825154098, 847806545767, 7196895817375, 63389642645486, 578318132627495, 5456455370760825, 53165437331978992, 534262881004973981
Offset: 2
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 2]][[2]];
Array[a, 24, 2] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
A270757
Total sum of the sizes of all blocks with maximal element 3 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
9, 16, 41, 127, 456, 1845, 8257, 40338, 212983, 1205911, 7275802, 46534535, 314117861, 2229489144, 16584674293, 128934314027, 1044976711816, 8809644039105, 77101357474077, 699264675713410, 6561367477780443, 63603478257343891, 636087039930484642
Offset: 3
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 3]][[2]];
Array[a, 24, 3] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
A270758
Total sum of the sizes of all blocks with maximal element 4 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
30, 67, 195, 670, 2623, 11437, 54692, 283625, 1581303, 9413380, 59497049, 397402597, 2794008798, 20606565063, 158955946879, 1279119138486, 10712907438835, 93190762200361, 840437752639132, 7844783028326405, 75673025264120531, 753330825335964276
Offset: 4
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 4]][[2]];
Array[a, 24, 4] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
A270759
Total sum of the sizes of all blocks with maximal element 5 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
112, 299, 979, 3702, 15717, 73561, 374718, 2057641, 12088759, 75528808, 499336559, 3478563389, 25443377280, 194791872127, 1556720156567, 12955521377878, 112041717014289, 1004979994978317, 9333443375249734, 89610138696275685, 888152337277216747
Offset: 5
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 5]][[2]];
Array[a, 24, 5] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
A270760
Total sum of the sizes of all blocks with maximal element 6 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
463, 1429, 5204, 21485, 98367, 492112, 2661473, 15433189, 95330022, 623920659, 4307488855, 31251896082, 237507413011, 1885386460081, 15594381406204, 134098780567817, 1196511239506523, 11057997444651072, 105684135069638365, 1043003293054453121
Offset: 6
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 6]][[2]];
Array[a, 24, 6] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
A270761
Total sum of the sizes of all blocks with maximal element 7 in all set partitions of {1,2,...,n}.
Original entry on oeis.org
2095, 7307, 29278, 131007, 643401, 3426532, 19610565, 119762455, 776018428, 5310053713, 38218929257, 288361428110, 2274040468083, 18695782169431, 159876844021430, 1419201089763907, 13053572286094533, 124202259586825404, 1220668798203165121
Offset: 7
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
a[n_] := b[n, 0, Max[0, 1 + n - 7]][[2]];
Array[a, 24, 7] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
Showing 1-10 of 22 results.
Comments