cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A270701 Total sum T(n,k) of the sizes of all blocks with maximal element k in all set partitions of {1,2,...,n}; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 3, 2, 4, 9, 5, 9, 16, 30, 15, 25, 41, 67, 112, 52, 82, 127, 195, 299, 463, 203, 307, 456, 670, 979, 1429, 2095, 877, 1283, 1845, 2623, 3702, 5204, 7307, 10279, 4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267, 21147, 29427, 40338, 54692, 73561, 98367, 131007, 174029, 230884, 306298
Offset: 1

Views

Author

Alois P. Heinz, Mar 21 2016

Keywords

Examples

			Row n=3 is [2, 4, 9] = [0+0+0+1+1, 0+2+1+0+1, 3+1+2+2+1] because the set partitions of {1,2,3} are: 123, 12|3, 13|2, 1|23, 1|2|3.
Triangle T(n,k) begins:
:     1;
:     1,    3;
:     2,    4,    9;
:     5,    9,   16,    30;
:    15,   25,   41,    67,   112;
:    52,   82,  127,   195,   299,   463;
:   203,  307,  456,   670,   979,  1429,  2095;
:   877, 1283, 1845,  2623,  3702,  5204,  7307, 10279;
:  4140, 5894, 8257, 11437, 15717, 21485, 29278, 39848, 54267;
		

Crossrefs

Main and lower diagonals give: A124427, A270765, A270766, A270767, A270768, A270769, A270770, A270771, A270772, A270773.
Row sums give A070071.
Reflected triangle gives A270702.
T(2n-1,n) gives A270703.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
         `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
          [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
         `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
        end:
    T:= (n, k)-> b(n, 0, max(0, 1+n-k))[2]:
    seq(seq(T(n, k), k=1..n), n=1..12);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m+1, 0, Function[p, p + If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[ n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t < 0, t, If[t > 0, t-1, 0] ]]]]], {j, 1, m+1}]];
    T[n_, k_] := b[n, 0, Max[0, 1+n-k]][[2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)

Formula

T(n,k) = A270702(n,n-k+1).

A070071 a(n) = n*B(n), where B(n) are the Bell numbers, A000110.

Original entry on oeis.org

0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0

Views

Author

Karol A. Penson, Apr 19 2002

Keywords

Comments

a(n) is the total number of successions among all partitions of {1,2,...,n+1}; a succession is a pair (i,i+1) of consecutive integers lying in a block. For example, a(3)=15 because {1,2,3,4} has 6 partitions with 1 succession - 1/2/34, 1/23/4, 12/3/4, 14/23, 134/2, 124/3, 3 partitions with 2 successions - 1/234, 123/4, 12/34 and 1 partition with 3 successions - 1234. Thus a(3) = 6*1 + 3*2 + 1*3 = 15. - Augustine O. Munagi, Jul 01 2008
a(n) is the number of occurrences of integers in a list of all partitions of the set {1,...,n}. For example, the list 123, 1/23, 2/13, 3/12, 1/2/3 of all partitions of the set {1,2,3} requires 15 occurrences of integers each belonging to that set. [From Michael Hardy (hardy(AT)math.umn.edu), Nov 08 2008]
The bijection between the two foregoing characterizations is as follows: Fix x in {1,2,...,n} and associate x with the succession (x,x+1) which appears in some partitions of {1,2,...,n+1}. Replace x,x+1 by x and partition the n-set {1,2,...,x,x+2,...,n+1}, giving B(n) partitions. Thus the succession (x,x+1) occurs among partitions of {1,2,...,n+1} exactly B(n) times. - Augustine O. Munagi, Jun 02 2010

Crossrefs

Programs

  • Magma
    [n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007
    a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n]
    Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *)
    Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
  • PARI
    a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
    
  • Sage
    [bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
    

Formula

E.g.f: x*exp(x)*exp(exp(x)-1).
Sum_{k=1..n} n*binomial(n-1, k-1)*Bell(n-k), n >= 2. - Zerinvary Lajos, Nov 22 2006
a(n) ~ n^(n+1) * exp(n/LambertW(n)-1-n) / (sqrt(1+LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{k=1..n} k * A175757(n,k). - Alois P. Heinz, Mar 03 2020
a(n) = Sum_{j=0..n} n * Stirling2(n,j). - Detlef Meya, Apr 11 2024

A124427 Sum of the sizes of the blocks containing the element 1 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 1, 3, 9, 30, 112, 463, 2095, 10279, 54267, 306298, 1838320, 11677867, 78207601, 550277003, 4055549053, 31224520322, 250547144156, 2090779592827, 18110124715919, 162546260131455, 1509352980864191, 14478981877739094, 143299752100925452, 1461455003961745247
Offset: 0

Views

Author

Emeric Deutsch, Nov 10 2006

Keywords

Examples

			a(3)=9 because the 5 (=A000110(3)) set partitions of {1,2,3} are 123, 12|3, 13|2, 1|23 and 1|2|3 and 3+2+2+1+1=9.
		

Crossrefs

Column p=1 of A270236 or of A270702.
Main diagonal of A270701.

Programs

  • Maple
    with(combinat): seq(add(k*binomial(n-1,k-1)*bell(n-k),k=1..n),n=0..30);
  • Mathematica
    Table[Sum[Binomial[n-1,k-1] * BellB[n-k] * k, {k,1,n}], {n,0,22}] (* Geoffrey Critzer, Jun 14 2013 *)
    Flatten[{0, Table[(n-1)*BellB[n-1] + BellB[n], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 19 2016, after Vladeta Jovovic *)

Formula

a(n) = Sum(k*binomial(n-1,k-1)*B(n-k), k=1..n) = Sum(k*A056857(n,k), k=1..n), where B(q) are the Bell numbers (A000110).
a(n) = (n-1)*B(n-1)+B(n). - Vladeta Jovovic, Nov 10 2006
a(n) ~ Bell(n) * (LambertW(n) + 1). - Vaclav Kotesovec, Jul 28 2021

Extensions

a(0)=0 prepended by Alois P. Heinz, Mar 17 2016

A270703 Total sum of the sizes of all blocks with maximal element n in all set partitions of {1,2,...,2n-1}.

Original entry on oeis.org

1, 4, 41, 670, 15717, 492112, 19610565, 961547874, 56562256041, 3914022281500, 313638627550657, 28730918805512678, 2976543225606178893, 345587228510915829224, 44615408909143456529309, 6361213086726610526079402, 995709801367376369056571089
Offset: 1

Views

Author

Alois P. Heinz, Mar 21 2016

Keywords

Comments

Also total sum of the sizes of all blocks with minimal element n in all set partitions of {1,2,...,2n-1}.

Examples

			a(2) = 4 = 0+2+1+0+1 = sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,3}: 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, [1, 0], add(
         `if`(t=1 and j<>m+1, 0, (p->p+`if`(j=-t or t=1 and j=m+1,
          [0, p[1]], 0))(b(n-1, max(m, j), `if`(t=1 and j=m+1, -j,
         `if`(t<0, t, `if`(t>0, t-1, 0)))))), j=1..m+1))
        end:
    a:= n-> b(2*n-1, 0, n)[2]:
    seq(a(n), n=1..20);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n==0, {1, 0}, Sum[If[t==1 && j != m+1, 0, Function[p, p+If[j == -t || t == 1 && j == m+1, {0, p[[1]]}, 0]][b[n-1, Max[m, j], If[t == 1 && j == m+1, -j, If[t<0, t, If[t>0, t-1, 0]]]]]], {j, 1, m+1}]]; a[n_] := b[2*n-1, 0, n][[2]]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A270701(2n-1,n) = A270702(2n-1,n).

A270756 Total sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

3, 4, 9, 25, 82, 307, 1283, 5894, 29427, 158269, 910520, 5570737, 36071631, 246188196, 1764757189, 13246059237, 103825154098, 847806545767, 7196895817375, 63389642645486, 578318132627495, 5456455370760825, 53165437331978992, 534262881004973981
Offset: 2

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=2 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 2]][[2]];
    Array[a, 24, 2] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)

A270757 Total sum of the sizes of all blocks with maximal element 3 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

9, 16, 41, 127, 456, 1845, 8257, 40338, 212983, 1205911, 7275802, 46534535, 314117861, 2229489144, 16584674293, 128934314027, 1044976711816, 8809644039105, 77101357474077, 699264675713410, 6561367477780443, 63603478257343891, 636087039930484642
Offset: 3

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=3 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 3]][[2]];
    Array[a, 24, 3] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)

A270758 Total sum of the sizes of all blocks with maximal element 4 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

30, 67, 195, 670, 2623, 11437, 54692, 283625, 1581303, 9413380, 59497049, 397402597, 2794008798, 20606565063, 158955946879, 1279119138486, 10712907438835, 93190762200361, 840437752639132, 7844783028326405, 75673025264120531, 753330825335964276
Offset: 4

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=4 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 4]][[2]];
    Array[a, 24, 4] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)

A270759 Total sum of the sizes of all blocks with maximal element 5 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

112, 299, 979, 3702, 15717, 73561, 374718, 2057641, 12088759, 75528808, 499336559, 3478563389, 25443377280, 194791872127, 1556720156567, 12955521377878, 112041717014289, 1004979994978317, 9333443375249734, 89610138696275685, 888152337277216747
Offset: 5

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=5 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 5]][[2]];
    Array[a, 24, 5] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)

A270760 Total sum of the sizes of all blocks with maximal element 6 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

463, 1429, 5204, 21485, 98367, 492112, 2661473, 15433189, 95330022, 623920659, 4307488855, 31251896082, 237507413011, 1885386460081, 15594381406204, 134098780567817, 1196511239506523, 11057997444651072, 105684135069638365, 1043003293054453121
Offset: 6

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=6 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 6]][[2]];
    Array[a, 24, 6] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)

A270761 Total sum of the sizes of all blocks with maximal element 7 in all set partitions of {1,2,...,n}.

Original entry on oeis.org

2095, 7307, 29278, 131007, 643401, 3426532, 19610565, 119762455, 776018428, 5310053713, 38218929257, 288361428110, 2274040468083, 18695782169431, 159876844021430, 1419201089763907, 13053572286094533, 124202259586825404, 1220668798203165121
Offset: 7

Views

Author

Alois P. Heinz, Mar 22 2016

Keywords

Crossrefs

Column k=7 of A270701.
A diagonal of A270702.

Programs

  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];
    a[n_] := b[n, 0, Max[0, 1 + n - 7]][[2]];
    Array[a, 24, 7] (* Jean-François Alcover, May 26 2018, from Maple code for A270701 *)
Showing 1-10 of 22 results. Next