A138378
Number of embedded coalitions in an n-person game.
Original entry on oeis.org
1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, 3535027, 23430840, 163254885, 1192059223, 9097183602, 72384727657, 599211936355, 5150665398898, 45891416030315, 423145657921379, 4031845922290572, 39645290116637023, 401806863439720943, 4192631462935194064
Offset: 1
David Yeung (wkyeung(AT)hkbu.edu.hk), May 08 2008
a(1) = combination(1,0) = 1,
a(2) = combination(2,1) + combination(2,0)= 3,
a(3) = combination(3,2)* a(1) + combination(3,2) + combination(3,1) + combination(3,0)= 10,
a(4) = combination(4,3)* {a(1) + a(2)} + combination(4,2)* a(1) + combination7(4,3)combination(4,2) + combination(4,1) + combination(4,0)= 37,
a(5) = combination(5,4)* {a(1) + a(2) + a(3)} combination(5,3)* {a(1) + a(2)} + combination(5,2)* a(1) + combination(5,4) + combination(5,3) + combination(5,2) + combination(5,1) + combination(5,0)= 151.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, New York, 1995.
- Alois P. Heinz, Table of n, a(n) for n = 1..575
- E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
- Gábor Czédli, Lattices with lots of congruence energy, arXiv:2205.02294 [math.RA], 2022.
- A. L. L. Gao, S. Kitaev, and P. B. Zhang. On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
- David W. K. Yeung, Recursive sequence identifying the number of embedded coalitions, International Game Theory Review 10(2008), 129-136.
-
[&+[k*StirlingSecond(n, k): k in [1..n]]: n in [1..25]]; // Vincenzo Librandi, May 18 2019
-
b:= proc(n, m) option remember;
`if`(n=0, m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..24); # Alois P. Heinz, Dec 10 2024
-
a[n_] := Sum[Binomial[n, j] BellB[j], {j, 0, n-1}];
Array[a, 24] (* Jean-François Alcover, Aug 19 2018 *)
A285595
Sum T(n,k) of the k-th entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 17, 10, 3, 76, 52, 18, 4, 362, 274, 111, 28, 5, 1842, 1500, 675, 200, 40, 6, 9991, 8614, 4185, 1380, 325, 54, 7, 57568, 51992, 26832, 9568, 2510, 492, 70, 8, 351125, 329650, 178755, 67820, 19255, 4206, 707, 88, 9, 2259302, 2192434, 1239351, 494828, 149605, 35382, 6629, 976, 108, 10
Offset: 1
T(3,2) = 10 because the sum of the second entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+2+3+3+0 = 10.
Triangle T(n,k) begins:
1;
4, 2;
17, 10, 3;
76, 52, 18, 4;
362, 274, 111, 28, 5;
1842, 1500, 675, 200, 40, 6;
9991, 8614, 4185, 1380, 325, 54, 7;
57568, 51992, 26832, 9568, 2510, 492, 70, 8;
...
-
T:= proc(h) option remember; local b; b:=
proc(n, l) option remember; `if`(n=0, [1, 0],
(p-> p+[0, (h-n+1)*p[1]*x^1])(b(n-1, [l[], 1]))+
add((p-> p+[0, (h-n+1)*p[1]*x^(l[j]+1)])(b(n-1,
sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l)))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2])
end:
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*add(x^k, k=1..j-1)])(
b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i)*i, i=1..n))(b(n+1)[2]):
seq(T(n), n=1..12);
-
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[# + {0, #[[1]]*Sum[x^k, {k, 1, j-1} ]}&[b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]];
T[n_] := Table[Coefficient[#, x, i]*i, {i, 1, n}] &[b[n + 1][[2]]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2018, translated from 2nd Maple program *)
A124325
Number of blocks of size >1 in all partitions of an n-set.
Original entry on oeis.org
0, 0, 1, 4, 17, 76, 362, 1842, 9991, 57568, 351125, 2259302, 15288000, 108478124, 805037105, 6233693772, 50257390937, 421049519856, 3659097742426, 32931956713294, 306490813820239, 2945638599347760, 29198154161188501
Offset: 0
a(3) = 4 because in the partitions 123, 12|3, 13|2, 1|23, 1|2|3 we have four blocks of size >1.
-
with(combinat): c:=n->bell(n+1)-bell(n)-n*bell(n-1): seq(c(n),n=0..23);
-
nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x]-1-x)Exp[Exp[x]-1],{x,0,nn}],x] (* Geoffrey Critzer, Mar 28 2013 *)
-
N = 66; x = 'x + O('x^N);
egf = (exp(x)-1-x)*exp(exp(x)-1) + 'c0;
gf = serlaplace(egf);
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Mar 29 2013 */
A224271
Number of set partitions of {1,2,...,n} such that the element 1 is in an odd-sized block.
Original entry on oeis.org
1, 1, 3, 8, 28, 107, 459, 2151, 10931, 59700, 348146, 2155925, 14112377, 97266301, 703484851, 5323515156, 42040470092, 345670438963, 2953171501547, 26166317121747, 240047041176843, 2276607815242880, 22290187889601330, 225018607554567149, 2339331996135377345
Offset: 1
a(4) = 8 because we have: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}, {{1},{2},{3,4}}, {{1},{2,3},{4}}, {{1},{2,4},{3}}, {{1},{2},{3},{4}}.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
end:
a:= n-> (p-> add(coeff(p, x, i)*(i+1), i=0..degree(p)))(b(n-1$2)):
seq(a(n), n=1..15); # Alois P. Heinz, Mar 08 2015
# second Maple program:
b:= proc(n, t, m) option remember; `if`(n=0, t, (m-1)*
b(n-1, t, m)+b(n-1, 1-t, m)+b(n-1, t, m+1))
end:
a:= n-> b(n-1, 1$2):
seq(a(n), n=1..25); # Alois P. Heinz, May 17 2023
-
nn=25;Drop[Range[0,nn]!CoefficientList[Series[Integrate[Exp[Cosh[x]-1]D[ Exp[Sinh[x]],x],x],{x,0,nn}],x],1]
A288785
Number of blocks of size >= three in all set partitions of n.
Original entry on oeis.org
1, 5, 26, 137, 750, 4307, 25996, 164825, 1096217, 7633650, 55549664, 421599778, 3331027887, 27349472297, 232967157736, 2055635993935, 18762063976810, 176896220650029, 1720762736285790, 17249873608817569, 178010337967774511, 1889129778601708612
Offset: 3
a(4) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
a(5) = 26: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
a(6) = 137: 123456, 12345|6, 12346|5, ..., 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234, ..., 1|256|3|4, 1|2|356|4, 1|2|3|456.
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n g(n, 3):
seq(a(n), n=3..30);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
`if`(j>2, p[1], 0)])(b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=3..30); # Alois P. Heinz, Jan 06 2022
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k+1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 3];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A286896
Number of blocks of size >= n in all set partitions of [2n].
Original entry on oeis.org
1, 3, 17, 137, 1395, 16955, 237426, 3740609, 65197797, 1241499241, 25577181324, 565688751435, 13346516581331, 334144326030052, 8837737924901855, 245998212661731213, 7182425756528424275, 219332432679783740235, 6987451758608249737342, 231704015156531645221237
Offset: 0
a(2) = 17: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. Here three set partitions contain 2 blocks of size 2.
-
b:= proc(n, k) option remember; `if`(k>n, 0,
binomial(n, k)*combinat[bell](n-k)+b(n, k+1))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..25);
-
a[n_] := Sum[Binomial[2 n, j] BellB[j], {j, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2018 *)
A288786
Number of blocks of size >= four in all set partitions of n.
Original entry on oeis.org
1, 6, 37, 225, 1395, 8944, 59585, 413117, 2981310, 22380814, 174600298, 1413841252, 11868587577, 103155618776, 927141821215, 8606806236367, 82430269073469, 813600584094320, 8267450613029789, 86406853732930699, 927993270700444588, 10232636504064477996
Offset: 4
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n g(n, 4):
seq(a(n), n=4..30);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
`if`(j>3, p[1], 0)])(b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=4..30); # Alois P. Heinz, Jan 06 2022
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k+1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 4];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A288787
Number of blocks of size >= five in all set partitions of n.
Original entry on oeis.org
1, 7, 50, 345, 2392, 16955, 123707, 932010, 7260709, 58509323, 487593202, 4199841037, 37361858716, 342989895895, 3246458915947, 31653980371254, 317654338317380, 3278058775976704, 34757921507150964, 378372365291381716, 4225533329681577846, 48375204740642752562
Offset: 5
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n g(n, 5):
seq(a(n), n=5..30);
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 5];
Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A288788
Number of blocks of size >= 6 in all set partitions of n.
Original entry on oeis.org
1, 8, 65, 502, 3851, 29921, 237426, 1932529, 16173029, 139320277, 1235847277, 11288120480, 106132359679, 1026681599731, 10212591089574, 104393925768077, 1095895294558168, 11806719056706773, 130457490607638988, 1477428802636263486, 17138268233851671782
Offset: 6
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n g(n, 6):
seq(a(n), n=6..30);
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 6];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
A288789
Number of blocks of size >= 7 in all set partitions of n.
Original entry on oeis.org
1, 9, 82, 701, 5897, 49854, 427597, 3740609, 33479542, 307119477, 2890138160, 27911144971, 276632735047, 2813333368854, 29349063282197, 313940448544057, 3441759044602385, 38652680805862224, 444450158120668786, 5229815283321976222, 62942722623990478840
Offset: 7
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*binomial(n-1, j-1), j=1..n))
end:
g:= proc(n, k) option remember; `if`(n g(n, 7):
seq(a(n), n=7..30);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+
`if`(j>6, [0, p[1]], 0))(b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=7..30); # Alois P. Heinz, Jun 26 2022
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]];
g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]];
a[n_] := g[n, 7];
Table[a[n], {n, 7, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)
Showing 1-10 of 13 results.
Comments