A285362
Sum T(n,k) of the entries in the k-th blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 15, 12, 3, 60, 58, 28, 4, 262, 273, 185, 55, 5, 1243, 1329, 1094, 495, 96, 6, 6358, 6839, 6293, 3757, 1148, 154, 7, 34835, 37423, 36619, 26421, 11122, 2380, 232, 8, 203307, 217606, 219931, 180482, 96454, 28975, 4518, 333, 9, 1257913, 1340597, 1376929, 1230737, 787959, 308127, 67898, 7995, 460, 10
Offset: 1
T(3,2) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
Triangle T(n,k) begins:
1;
4, 2;
15, 12, 3;
60, 58, 28, 4;
262, 273, 185, 55, 5;
1243, 1329, 1094, 495, 96, 6;
6358, 6839, 6293, 3757, 1148, 154, 7;
34835, 37423, 36619, 26421, 11122, 2380, 232, 8;
...
Main diagonal and first lower diagonal give:
A000027,
A006000 (for n>0).
-
T:= proc(h) option remember; local b; b:=
proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> p
+[0, (h-n+1)*p[1]*x^j])(b(n-1, max(m, j))), j=1..m+1))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, 0)[2])
end:
seq(T(n), n=1..12);
-
T[h_] := T[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[# + {0, (h - n + 1)*#[[1]]*x^j}&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, 0][[2]]]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A283424
Number T(n,k) of blocks of size >= k in all set partitions of [n], assuming that every set partition contains one block of size zero; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 2, 1, 5, 3, 1, 15, 10, 4, 1, 52, 37, 17, 5, 1, 203, 151, 76, 26, 6, 1, 877, 674, 362, 137, 37, 7, 1, 4140, 3263, 1842, 750, 225, 50, 8, 1, 21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1, 115975, 94828, 57568, 25996, 8944, 2392, 502, 82, 10, 1
Offset: 0
T(3,2) = 4 because the number of blocks of size >= 2 in all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 1+1+1+1+0 = 4.
Triangle T(n,k) begins:
1;
2, 1;
5, 3, 1;
15, 10, 4, 1;
52, 37, 17, 5, 1;
203, 151, 76, 26, 6, 1;
877, 674, 362, 137, 37, 7, 1;
4140, 3263, 1842, 750, 225, 50, 8, 1;
21147, 17007, 9991, 4307, 1395, 345, 65, 9, 1;
...
Columns k=0-10 give:
A000110(n+1),
A138378 or
A005493(n-1),
A124325,
A288785,
A288786,
A288787,
A288788,
A288789,
A288790,
A288791,
A288792.
-
T:= proc(n, k) option remember; `if`(k>n, 0,
binomial(n, k)*combinat[bell](n-k)+T(n, k+1))
end:
seq(seq(T(n, k), k=0..n), n=0..14);
-
T[n_, k_] := Sum[Binomial[n, j]*BellB[j], {j, 0, n - k}];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2018 *)
A278677
a(n) = Sum_{k=0..n} A011971(n, k)*(k + 1). The Aitken-Bell triangle considered as a linear transform applied to the positive numbers.
Original entry on oeis.org
1, 5, 23, 109, 544, 2876, 16113, 95495, 597155, 3929243, 27132324, 196122796, 1480531285, 11647194573, 95297546695, 809490850313, 7126717111964, 64930685865768, 611337506786061, 5940420217001199, 59502456129204083, 613689271227219015, 6510381400140132872
Offset: 0
Treeshelves of size 3:
1 1 1 1 1 1
/ \ / \ / \ / \
2 2 / \ 2 \ / 2
/ \ 2 2 3 3
3 3 \ /
3 3
Pattern T231:
1
/
/
2
\
3
Treeshelves of size 3 that avoid pattern T231:
1 1 1 1 1
/ \ \ / \ / \
2 2 \ 2 \ / 2
/ \ 2 3 3
3 3 /
3
Popularity of left children here is 5.
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50.
Cf.
A000110,
A000111,
A000142,
A001286,
A008292,
A011971,
A131178,
A278678,
A278679,
A285595,
A286897,
A367955.
-
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
(p-> p+[0, p[1]*n])(b(n-1, m+1))+m*b(n-1, m))
end:
a:= n-> b(n+1, 0)[2]:
seq(a(n), n=0..22); # Alois P. Heinz, Dec 15 2023
# Using the generating function:
gf := ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2: ser := series(gf, z, 25):
seq((n+2)!*coeff(ser, z, n), n=0..22); # Peter Luschny, Feb 01 2025
-
a[n_] := (n+3) BellB[n+2] - BellB[n+3];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 01 2018 *)
-
from sympy import bell
HOW_MANY = 30
print([(n + 3) * bell(n+2) - bell(n + 3) for n in range(HOW_MANY)])
A285793
Sum T(n,k) of the k-th entries in all cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 18, 13, 5, 96, 83, 43, 18, 600, 582, 342, 192, 84, 4320, 4554, 2874, 1824, 1068, 480, 35280, 39672, 26232, 17832, 11784, 7080, 3240, 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200, 3265920, 4044240, 2834640, 2078640, 1534320, 1110960, 765360, 473760, 221760
Offset: 1
T(3,2) = 13 because the sum of the second entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 2+3+2+3+3+0 = 13.
Triangle T(n,k) begins:
: 1;
: 4, 2;
: 18, 13, 5;
: 96, 83, 43, 18;
: 600, 582, 342, 192, 84;
: 4320, 4554, 2874, 1824, 1068, 480;
: 35280, 39672, 26232, 17832, 11784, 7080, 3240;
: 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200;
Main diagonal and first lower diagonal give:
A038720(n-1) (for n>1),
A286175.
A124325
Number of blocks of size >1 in all partitions of an n-set.
Original entry on oeis.org
0, 0, 1, 4, 17, 76, 362, 1842, 9991, 57568, 351125, 2259302, 15288000, 108478124, 805037105, 6233693772, 50257390937, 421049519856, 3659097742426, 32931956713294, 306490813820239, 2945638599347760, 29198154161188501
Offset: 0
a(3) = 4 because in the partitions 123, 12|3, 13|2, 1|23, 1|2|3 we have four blocks of size >1.
-
with(combinat): c:=n->bell(n+1)-bell(n)-n*bell(n-1): seq(c(n),n=0..23);
-
nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x]-1-x)Exp[Exp[x]-1],{x,0,nn}],x] (* Geoffrey Critzer, Mar 28 2013 *)
-
N = 66; x = 'x + O('x^N);
egf = (exp(x)-1-x)*exp(exp(x)-1) + 'c0;
gf = serlaplace(egf);
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Mar 29 2013 */
A175757
Triangular array read by rows: T(n,k) is the number of blocks of size k in all set partitions of {1,2,...,n}.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 20, 12, 4, 1, 75, 50, 20, 5, 1, 312, 225, 100, 30, 6, 1, 1421, 1092, 525, 175, 42, 7, 1, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
The set {1,2,3} has 5 partitions, {{1, 2, 3}}, {{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2}, {3}}, and {{2}, {3}, {1}}, and there are a total of 3 blocks of size 2, so T(3,2)=3.
Triangle begins:
1;
2, 1;
6, 3, 1;
20, 12, 4, 1;
75, 50, 20, 5, 1;
312, 225, 100, 30, 6, 1;
...
-
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*x^j])(b(n-j)*
binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n)[2]):
seq(T(n), n=1..12); # Alois P. Heinz, Apr 24 2017
-
Table[Table[Length[Select[Level[SetPartitions[m],{2}],Length[#]==n&]],{n,1,m}],{m,1,10}]//Grid
A286897
Sum T(n,k) of the k-th last entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 5, 1, 23, 6, 1, 109, 33, 7, 1, 544, 182, 45, 8, 1, 2876, 1034, 284, 59, 9, 1, 16113, 6122, 1815, 420, 75, 10, 1, 95495, 37927, 11931, 2987, 595, 93, 11, 1, 597155, 246030, 81205, 21620, 4665, 814, 113, 12, 1, 3929243, 1669941, 573724, 160607, 36900, 6979, 1082, 135, 13, 1
Offset: 1
T(3,2) = 6 because the sum of the second last entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+1+1+2 = 6.
Triangle T(n,k) begins:
1;
5, 1;
23, 6, 1;
109, 33, 7, 1;
544, 182, 45, 8, 1;
2876, 1034, 284, 59, 9, 1;
16113, 6122, 1815, 420, 75, 10, 1;
95495, 37927, 11931, 2987, 595, 93, 11, 1;
...
-
b:= proc(n, l) option remember; `if`(n=0, [1, 0],
(p-> p+[0, n*p[1]*x^1])(b(n-1, [l[], 1]))+
add((p-> p+[0, n*p[1]*x^(l[j]+1)])(b(n-1,
sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, [])[2]):
seq(T(n), n=1..14);
-
b[0, ] = {1, 0}; b[n, l_] := b[n, l] = Function[p, p + {0, n*p[[1]]*x^1} ][b[n - 1, Append[l, 1]]] + Sum[Function[p, p + {0, n*p[[1]]*x^(l[[j]] + 1)}][b[n - 1, Reverse @ Sort[ReplacePart[l, j -> l[[j]] + 1]]]], {j, 1, Length[l]}];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, n}]][b[n, {}][[2]]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 26 2018, from Maple *)
Showing 1-7 of 7 results.
Comments