A038720
a(n) = (n+3)*n!/2.
Original entry on oeis.org
2, 5, 18, 84, 480, 3240, 25200, 221760, 2177280, 23587200, 279417600, 3592512000, 49816166400, 741015475200, 11769069312000, 198766503936000, 3556874280960000, 67224923910144000, 1338096104497152000, 27978373094031360000, 613091306060513280000
Offset: 1
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
- Index entries for sequences related to posets.
Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 09 2000.
A180119
a(n) = (n+2)! * Sum_{k = 1..n} 1/((k+1)*(k+2)).
Original entry on oeis.org
0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000, 11802007641664880640000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 209. Book's website
- H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010 (section 10, p.45).
-
[n*Factorial(n+2)/(2*(n+2)): n in [0..25]]; // Vincenzo Librandi, Feb 20 2017
-
a:= n-> n*(n+2)!/(2*(n+2)): seq(a(n), n=0..20);
-
Table[n (n + 2)! / (2 (n + 2)), {n, 0, 30}] (* Vincenzo Librandi, Feb 20 2017 *)
-
a(n) = (n+2)! * sum(k=1, n,1/((k+1)*(k+2))); \\ Michel Marcus, Jan 10 2015
-
apply( A180119(n)=(n+1)!\2*n, [0..20]) \\ M. F. Hasler, Apr 10 2018
A285439
Sum T(n,k) of the entries in the k-th cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 21, 12, 3, 132, 76, 28, 4, 960, 545, 235, 55, 5, 7920, 4422, 2064, 612, 96, 6, 73080, 40194, 19607, 6692, 1386, 154, 7, 745920, 405072, 202792, 75944, 18736, 2816, 232, 8, 8346240, 4484808, 2280834, 911637, 254061, 46422, 5256, 333, 9
Offset: 1
T(3,1) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21.
Triangle T(n,k) begins:
1;
4, 2;
21, 12, 3;
132, 76, 28, 4;
960, 545, 235, 55, 5;
7920, 4422, 2064, 612, 96, 6;
73080, 40194, 19607, 6692, 1386, 154, 7;
745920, 405072, 202792, 75944, 18736, 2816, 232, 8;
...
Main diagonal and first lower diagonal give:
A000027,
A006000 (for n>0).
-
T:= proc(h) option remember; local b; b:=
proc(n, l) option remember; `if`(n=0, [mul((i-1)!, i=l), 0],
(p-> p+[0, (h-n+1)*p[1]*x^(nops(l)+1)])(b(n-1, [l[], 1]))+
add((p-> p+[0, (h-n+1)*p[1]*x^j])(
b(n-1, subsop(j=l[j]+1, l))), j=1..nops(l)))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2])
end:
seq(T(n), n=1..10);
-
T[h_] := T[h] = Module[{b}, b[n_, l_] := b[n, l] = If[n == 0, {Product[(i - 1)!, {i, l}], 0}, # + {0, (h - n + 1)*#[[1]]*x^(Length[l] + 1)}&[b[n - 1, Append[l, 1]]] + Sum[# + {0, (h-n+1)*#[[1]]*x^j}&[b[n - 1, ReplacePart[ l, j -> l[[j]] + 1]]], {j, 1, Length[l]}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, {}][[2]]]];
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
A285595
Sum T(n,k) of the k-th entries in all blocks of all set partitions of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 17, 10, 3, 76, 52, 18, 4, 362, 274, 111, 28, 5, 1842, 1500, 675, 200, 40, 6, 9991, 8614, 4185, 1380, 325, 54, 7, 57568, 51992, 26832, 9568, 2510, 492, 70, 8, 351125, 329650, 178755, 67820, 19255, 4206, 707, 88, 9, 2259302, 2192434, 1239351, 494828, 149605, 35382, 6629, 976, 108, 10
Offset: 1
T(3,2) = 10 because the sum of the second entries in all blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 2+2+3+3+0 = 10.
Triangle T(n,k) begins:
1;
4, 2;
17, 10, 3;
76, 52, 18, 4;
362, 274, 111, 28, 5;
1842, 1500, 675, 200, 40, 6;
9991, 8614, 4185, 1380, 325, 54, 7;
57568, 51992, 26832, 9568, 2510, 492, 70, 8;
...
-
T:= proc(h) option remember; local b; b:=
proc(n, l) option remember; `if`(n=0, [1, 0],
(p-> p+[0, (h-n+1)*p[1]*x^1])(b(n-1, [l[], 1]))+
add((p-> p+[0, (h-n+1)*p[1]*x^(l[j]+1)])(b(n-1,
sort(subsop(j=l[j]+1, l), `>`))), j=1..nops(l)))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2])
end:
seq(T(n), n=1..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0],
add((p-> p+[0, p[1]*add(x^k, k=1..j-1)])(
b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i)*i, i=1..n))(b(n+1)[2]):
seq(T(n), n=1..12);
-
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[# + {0, #[[1]]*Sum[x^k, {k, 1, j-1} ]}&[b[n - j]*Binomial[n - 1, j - 1]], {j, 1, n}]];
T[n_] := Table[Coefficient[#, x, i]*i, {i, 1, n}] &[b[n + 1][[2]]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2018, translated from 2nd Maple program *)
A286231
Sum T(n,k) of the entries in the k-th last cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 5, 1, 25, 10, 1, 143, 79, 17, 1, 942, 634, 197, 26, 1, 7074, 5462, 2129, 417, 37, 1, 59832, 51214, 23381, 5856, 786, 50, 1, 563688, 523386, 269033, 80053, 13934, 1360, 65, 1, 5858640, 5813892, 3281206, 1111498, 232349, 29728, 2204, 82, 1
Offset: 1
T(3,2) = 10 because the sum of the entries in the second last cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 0+0+3+4+1+2 = 10.
Triangle T(n,k) begins:
1;
5, 1;
25, 10, 1;
143, 79, 17, 1;
942, 634, 197, 26, 1;
7074, 5462, 2129, 417, 37, 1;
59832, 51214, 23381, 5856, 786, 50, 1;
563688, 523386, 269033, 80053, 13934, 1360, 65, 1;
...
A285795
Sum of the second entries in all cycles of all permutations of [n].
Original entry on oeis.org
0, 0, 2, 13, 83, 582, 4554, 39672, 382248, 4044240, 46663920, 583554240, 7865622720, 113711230080, 1755484617600, 28828769356800, 501858148377600, 9232213174732800, 178968924600883200, 3646603415927808000, 77916767838981120000, 1742147265551616000000
Offset: 0
a(3) = 13 because the sum of the second entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 2+3+2+3+3+0 = 13.
-
a:= proc(n) option remember; `if`(n<3, n*(n-1),
((2*n^2+3*n-1)*a(n-1)-(n-1)*n*(n+2)*a(n-2))/(n+1))
end:
seq(a(n), n=0..25);
-
Flatten[{0, Table[n! * (2*(n+1)*HarmonicNumber[n] - n - 3)/4, {n, 1, 25}]}] (* Vaclav Kotesovec, Apr 29 2017 *)
A286175
Sum of the n-th entries in all cycles of all permutations of [n+1].
Original entry on oeis.org
4, 13, 43, 192, 1068, 7080, 54360, 473760, 4616640, 49714560, 586051200, 7504358400, 103703846400, 1538074137600, 24366332390400, 410609751552000, 7333437855744000, 138362409529344000, 2749819506610176000, 57416487392968704000, 1256593887223234560000
Offset: 1
a(2) = 13 because the sum of the second entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 2+3+2+3+3+0 = 13.
-
a:= proc(n) option remember; `if`(n<3, [4, 13][n],
(n-1)*(2*n^2+7*n+4)*a(n-1)/(2*n^2+3*n-1))
end:
seq(a(n), n=1..25);
-
a[n_] := a[n] = If[n < 3, {4, 13}[[n]],
(n-1)*(2*n^2 + 7*n + 4)*a[n-1]/(2*n^2 + 3*n - 1)];
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Apr 21 2022, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments