A285439
Sum T(n,k) of the entries in the k-th cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 21, 12, 3, 132, 76, 28, 4, 960, 545, 235, 55, 5, 7920, 4422, 2064, 612, 96, 6, 73080, 40194, 19607, 6692, 1386, 154, 7, 745920, 405072, 202792, 75944, 18736, 2816, 232, 8, 8346240, 4484808, 2280834, 911637, 254061, 46422, 5256, 333, 9
Offset: 1
T(3,1) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21.
Triangle T(n,k) begins:
1;
4, 2;
21, 12, 3;
132, 76, 28, 4;
960, 545, 235, 55, 5;
7920, 4422, 2064, 612, 96, 6;
73080, 40194, 19607, 6692, 1386, 154, 7;
745920, 405072, 202792, 75944, 18736, 2816, 232, 8;
...
Main diagonal and first lower diagonal give:
A000027,
A006000 (for n>0).
-
T:= proc(h) option remember; local b; b:=
proc(n, l) option remember; `if`(n=0, [mul((i-1)!, i=l), 0],
(p-> p+[0, (h-n+1)*p[1]*x^(nops(l)+1)])(b(n-1, [l[], 1]))+
add((p-> p+[0, (h-n+1)*p[1]*x^j])(
b(n-1, subsop(j=l[j]+1, l))), j=1..nops(l)))
end: (p-> seq(coeff(p, x, i), i=1..n))(b(h, [])[2])
end:
seq(T(n), n=1..10);
-
T[h_] := T[h] = Module[{b}, b[n_, l_] := b[n, l] = If[n == 0, {Product[(i - 1)!, {i, l}], 0}, # + {0, (h - n + 1)*#[[1]]*x^(Length[l] + 1)}&[b[n - 1, Append[l, 1]]] + Sum[# + {0, (h-n+1)*#[[1]]*x^j}&[b[n - 1, ReplacePart[ l, j -> l[[j]] + 1]]], {j, 1, Length[l]}]]; Table[Coefficient[#, x, i], {i, 1, n}]&[b[h, {}][[2]]]];
Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
A285793
Sum T(n,k) of the k-th entries in all cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 4, 2, 18, 13, 5, 96, 83, 43, 18, 600, 582, 342, 192, 84, 4320, 4554, 2874, 1824, 1068, 480, 35280, 39672, 26232, 17832, 11784, 7080, 3240, 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200, 3265920, 4044240, 2834640, 2078640, 1534320, 1110960, 765360, 473760, 221760
Offset: 1
T(3,2) = 13 because the sum of the second entries in all cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 2+3+2+3+3+0 = 13.
Triangle T(n,k) begins:
: 1;
: 4, 2;
: 18, 13, 5;
: 96, 83, 43, 18;
: 600, 582, 342, 192, 84;
: 4320, 4554, 2874, 1824, 1068, 480;
: 35280, 39672, 26232, 17832, 11784, 7080, 3240;
: 322560, 382248, 261288, 185688, 131256, 88920, 54360, 25200;
Main diagonal and first lower diagonal give:
A038720(n-1) (for n>1),
A286175.
A284816
Sum of entries in the first cycles of all permutations of [n].
Original entry on oeis.org
1, 4, 21, 132, 960, 7920, 73080, 745920, 8346240, 101606400, 1337212800, 18920563200, 286442956800, 4620449433600, 79114299264000, 1433211107328000, 27387931963392000, 550604138692608000, 11617107089043456000, 256671161862635520000, 5926549291918295040000
Offset: 1
a(3) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21.
-
a:= n-> n!*(n*(n+1)-(n-1)*(n+2)/2)/2:
seq(a(n), n=1..25);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n,
(n^2+n+2)*n*a(n-1)/(n^2-n+2))
end:
seq(a(n), n=1..25);
A286231
Sum T(n,k) of the entries in the k-th last cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 5, 1, 25, 10, 1, 143, 79, 17, 1, 942, 634, 197, 26, 1, 7074, 5462, 2129, 417, 37, 1, 59832, 51214, 23381, 5856, 786, 50, 1, 563688, 523386, 269033, 80053, 13934, 1360, 65, 1, 5858640, 5813892, 3281206, 1111498, 232349, 29728, 2204, 82, 1
Offset: 1
T(3,2) = 10 because the sum of the entries in the second last cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 0+0+3+4+1+2 = 10.
Triangle T(n,k) begins:
1;
5, 1;
25, 10, 1;
143, 79, 17, 1;
942, 634, 197, 26, 1;
7074, 5462, 2129, 417, 37, 1;
59832, 51214, 23381, 5856, 786, 50, 1;
563688, 523386, 269033, 80053, 13934, 1360, 65, 1;
...
A300559
a(n) = n*(n+1)!/2 + 1.
Original entry on oeis.org
1, 2, 7, 37, 241, 1801, 15121, 141121, 1451521, 16329601, 199584001, 2634508801, 37362124801, 566658892801, 9153720576001, 156920924160001, 2845499424768001, 54420176498688001, 1094805903679488001, 23112569077678080001, 510909421717094400001, 11802007641664880640001
Offset: 0
A301373
Numbers k such that (k+1)!*k/2 + 1 is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 19, 24, 251, 374, 953, 1104, 1507, 3390, 4443, 5762
Offset: 1
-
Do[ If[ PrimeQ[n(n +1)!/2 +1], Print@ n], {n, 4000}] (* Robert G. Wilson v, Apr 05 2018 *)
-
isok(k) = ispseudoprime((k+1)! * k / 2 + 1);
A156815
Triangle T(n, k) = n!*StirlingS2(n, k)/binomial(n, k), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 6, 6, 0, 6, 28, 36, 24, 0, 24, 180, 300, 240, 120, 0, 120, 1488, 3240, 3120, 1800, 720, 0, 720, 15120, 43344, 50400, 33600, 15120, 5040, 0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320, 0, 40320, 2570400, 13068000, 22377600, 20018880, 11430720, 4656960, 1451520, 362880
Offset: 0
Triangle begins as:
1;
0, 1;
0, 1, 2;
0, 2, 6, 6;
0, 6, 28, 36, 24;
0, 24, 180, 300, 240, 120;
0, 120, 1488, 3240, 3120, 1800, 720;
0, 720, 15120, 43344, 50400, 33600, 15120, 5040;
0, 5040, 182880, 695520, 979776, 756000, 383040, 141120, 40320;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 99.
-
[Factorial(n)*StirlingSecond(n,k)/Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 10 2021
-
T[n_, k_] = n!*StirlingS2[n, k]/Binomial[n, k];
Table[T[n, k], {n, 0, 12}, {k,0,n}]//Flatten
-
flatten([[factorial(n)*stirling_number2(n,k)/binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 10 2021
A305739
a(n) = n!*T(n) - 1, where T(n) is the n-th triangular number.
Original entry on oeis.org
0, 5, 35, 239, 1799, 15119, 141119, 1451519, 16329599, 199583999, 2634508799, 37362124799, 566658892799, 9153720575999, 156920924159999, 2845499424767999, 54420176498687999, 1094805903679487999, 23112569077678079999, 510909421717094399999
Offset: 1
See
A305738 for the indices of primes in this sequence.
-
seq(n*(n+1)!/2-1,n=1..21);
-
a(n) = n*(n+1)!/2 - 1; \\ Michel Marcus, Jun 23 2018
Showing 1-8 of 8 results.
Comments