cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300559 a(n) = n*(n+1)!/2 + 1.

Original entry on oeis.org

1, 2, 7, 37, 241, 1801, 15121, 141121, 1451521, 16329601, 199584001, 2634508801, 37362124801, 566658892801, 9153720576001, 156920924160001, 2845499424768001, 54420176498688001, 1094805903679488001, 23112569077678080001, 510909421717094400001, 11802007641664880640001
Offset: 0

Views

Author

M. F. Hasler, Apr 10 2018

Keywords

Comments

See A301373 and A302859 for the primes: it is remarkable that all of a(1..10) are primes, and only a(11) is the first composite term.

Crossrefs

Inspired by A302859.
Cf. A301373.

Programs

Formula

a(n) = A180119(n) + 1 = A001286(n+1) + 1.
D-finite with recurrence n*a(n+1) = (n+1)*(n+2)*(a(n)-1) + n. - Chai Wah Wu, Apr 11 2018
E.g.f.: exp(x)-1/(x-1)^3*x. - Simon Plouffe, Jun 21 2018

A302859 Primes of the form (k+1)!*k/2 + 1.

Original entry on oeis.org

2, 7, 37, 241, 1801, 15121, 141121, 1451521, 16329601, 199584001, 37362124801, 566658892801, 9153720576001, 23112569077678080001, 186134520519971831808000001
Offset: 1

Views

Author

Maheswara Rao Valluri, Apr 03 2018

Keywords

Comments

The next term, for k = 251 (see A301373), is
2566282033898537172673689833660299199318441\
47812028978290091772271674111238846647249346322032725585967946013083615\
44220440938904033673583084158870025082998875790404475054647299641196409\
72934112662249702715026203933143550590243427364871765801696382591273000\
77256511620017707120387621962694782616283336623216978502662268159966484\
36506095391239127788493879085200485514817503469381297494013097308996216\
58710310236069486145497777789215839354880000000000000000000000000000000\
0000000000000000000000000000001

Crossrefs

Programs

  • Mathematica
    Reap[For[k = 1, k <= 1000, k++, If[PrimeQ[p = (k+1)! k/2 + 1], Print["k = ", k, " p = ", p]; Sow[p]]]][[2, 1]]

Formula

a(n) = A300559(A301373(n)) for all n >= 1; a(n) = A300559(n) for 1 <= n <= 10. - M. F. Hasler, Apr 15 2018

Extensions

This sequence was originally submitted as A302174, then withdrawn, then reinstated with a new A-number by N. J. A. Sloane, Apr 14 2018

A305738 Numbers k such that k!*T(k) - 1 is prime, where T(k) is the k-th triangular number.

Original entry on oeis.org

2, 4, 28, 34, 47, 62, 228, 256, 258, 341, 848, 1362, 1709, 2262, 2692, 7907, 10396, 10501
Offset: 1

Views

Author

Maheswara Rao Valluri, Jun 22 2018

Keywords

Comments

The PFGW program has been used to certify all the terms up to a(18), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Jun 24 2018

Crossrefs

Programs

  • Mathematica
    Do[If[ PrimeQ[n(n +1)!/2 - 1], Print@ n], {n, 3000}]
  • PARI
    isok(n) = ispseudoprime(n(n+1)!/ 2 - 1);

Extensions

a(16)-a(18) from Giovanni Resta, Jun 24 2018
Showing 1-3 of 3 results.