A349979
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 4;
[4] 6, 15, 3;
[5] 24, 61, 35;
[6] 120, 290, 270, 40;
[7] 720, 1646, 1974, 700;
[8] 5040, 11025, 14707, 8288, 1260;
[9] 40320, 85345, 117459, 90272, 29484;
...
Column 0 gives 1 together with
A000142.
Column 1 gives 1 - (n-1)! +
A006231(n).
T(2n,n) gives
A110468(n-1) for n>=1.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 07 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A349980
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 6, 7, 3, 8, 24, 31, 15, 20, 30, 120, 191, 135, 40, 90, 144, 720, 1331, 945, 280, 420, 504, 840, 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760, 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360, 362880, 958879, 646965, 395360, 238140, 72576, 151200, 172800, 226800, 403200
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 1, 3;
[4] 6, 7, 3, 8;
[5] 24, 31, 15, 20, 30;
[6] 120, 191, 135, 40, 90, 144;
[7] 720, 1331, 945, 280, 420, 504, 840;
[8] 5040, 10655, 7077, 4480, 1260, 2688, 3360, 5760;
[9] 40320, 95887, 64197, 41552, 11340, 18144, 20160, 25920, 45360;
...
Column 0 gives 1 together with
A000142.
Column 1 gives the nonzero terms of
A155521.
T(n,n-1) gives
A059171(n) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[2]=m,
0, l[2]), add(b(n-j, sort([l[], j])[1..2])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, n-1)))(b(n, [m$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Dec 07 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[2]] == m, 0, l[[2]]], Sum[b[n-j, Sort[Append[l, j]][[1;;2]]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m}]}, Table[Coefficient[p, x, i], {i, 0, Max[0, n - 1]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350015
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).
Original entry on oeis.org
1, 1, 2, 5, 1, 17, 7, 74, 46, 394, 311, 15, 2484, 2241, 315, 18108, 17627, 4585, 149904, 152839, 57897, 2240, 1389456, 1460944, 705600, 72800, 14257440, 15326180, 8673060, 1660120, 160460640, 175421214, 110271546, 31600800, 1247400, 1965444480, 2177730270, 1469308698, 559402272, 55135080
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 5, 1;
[4] 17, 7;
[5] 74, 46;
[6] 394, 311, 15;
[7] 2484, 2241, 315;
[8] 18108, 17627, 4585;
[9] 149904, 152839, 57897, 2240;
...
Column 0 gives 1 together with
A000774.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(lprint(T(n)), n=0..14); # Alois P. Heinz, Dec 11 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350273
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose fourth-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/4).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 11, 619, 101, 4108, 932, 31240, 8975, 105, 268028, 91387, 3465, 2562156, 991674, 74970, 27011016, 11514394, 1391390, 311378616, 143188574, 24188010, 246400, 3897004032, 1905067958, 412136010, 12812800, 52626496896, 27059601596, 7053834788, 438357920
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 11;
[6] 619, 101;
[7] 4108, 932;
[8] 31240, 8975, 105;
[9] 268028, 91387, 3465;
...
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..5])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 22 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 5]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A350274
Triangle read by rows: T(n,k) is the number of n-permutations whose fourth-shortest cycle has length exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 2, 6, 23, 1, 109, 1, 10, 619, 16, 45, 40, 4108, 92, 210, 420, 210, 31240, 771, 1645, 2800, 2520, 1344, 268028, 6883, 17325, 15960, 26460, 18144, 10080, 2562156, 68914, 173250, 148400, 226800, 211680, 151200, 86400, 27011016, 757934, 1854930, 1798720, 1801800, 2494800, 1940400, 1425600, 831600
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 2;
[3] 6;
[4] 23, 1;
[5] 109, 1, 10;
[6] 619, 16, 45, 40;
[7] 4108, 92, 210, 420, 210;
[8] 31240, 771, 1645, 2800, 2520, 1344;
[9] 268028, 6883, 17325, 15960, 26460, 18144, 10080;
...
Column 0 is 1 for n=0, together with
A000142(n) -
A122105(n-1) for n>=1.
-
m:= infinity:
b:= proc(n, l) option remember; `if`(n=0, x^`if`(l[4]=m,
0, l[4]), add(b(n-j, sort([l[], j])[1..4])
*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [m$4])):
seq(T(n), n=0..11); # Alois P. Heinz, Dec 22 2021
-
m = Infinity;
b[n_, l_] := b[n, l] = If[n == 0, x^If[l[[4]] == m, 0, l[[4]]], Sum[b[n-j, Sort[Append[l, j]][[1 ;; 4]]]*Binomial[n-1, j-1]*(j-1)!, {j, 1, n}]];
T[n_] := With[{p = b[n, {m, m, m, m}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Dec 29 2021, after Alois P. Heinz *)
A332907
Number of entries in the third cycles of all permutations of [n] when cycles are ordered by increasing lengths.
Original entry on oeis.org
1, 13, 101, 896, 7967, 78205, 827521, 9507454, 117211469, 1560454523, 22172178965, 336532052884, 5423997488041, 92726171603161, 1673203210233137, 31845893246619770, 636647098018469141, 13356074486442181999, 293166974869955073469, 6724854183662407594768
Offset: 3
-
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))((i-1)!^j*
b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
(n, i$j, n-i*j)), j=0..n/i)))
end:
a:= n-> b(n, 1, 3)[2]:
seq(a(n), n=3..22);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, 0, Sum[Function[ p, p + If[p =!= 0 && t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][(i - 1)!^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Array[i&, j], n - i*j]]], {j, 0, n/i}]]];
a[n_] := b[n, 1, 3][[2]];
a /@ Range[3, 22] (* Jean-François Alcover, Apr 21 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments