A145877
Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).
Original entry on oeis.org
1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
Offset: 1
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23).
Triangle starts:
1;
1, 1;
4, 0, 2;
15, 3, 0, 6;
76, 20, 0, 0, 24;
455, 105, 40, 0, 0, 120;
3186, 714, 420, 0, 0, 0, 720;
25487, 5845, 2688, 1260, 0, 0, 0, 5040;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
-
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k),x=0,16) end do: T:= proc(n,k) options operator, arrow: factorial(n)*coeff(g[k],x,n) end proc: for n to 11 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
Rest[Transpose[Table[Range[0, 16]! CoefficientList[
Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}],x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
A094310
Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.
Original entry on oeis.org
1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1
Triangle begins as:
1;
2, 1;
6, 3, 2;
24, 12, 8, 6;
120, 60, 40, 30, 24;
720, 360, 240, 180, 144, 120;
5040, 2520, 1680, 1260, 1008, 840, 720;
40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040;
...
T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
-
seq(seq(n!/k, k=1..n), n=1..10);
-
Table[n!/k, {n,10}, {k,n}]//Flatten
Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)
A349979
Irregular triangle read by rows: T(n,k) is the number of n-permutations whose second-longest cycle has length exactly k; n>=0, 0<=k<=floor(n/2).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 6, 15, 3, 24, 61, 35, 120, 290, 270, 40, 720, 1646, 1974, 700, 5040, 11025, 14707, 8288, 1260, 40320, 85345, 117459, 90272, 29484, 362880, 749194, 1023390, 974720, 446040, 72576, 3628800, 7347374, 9813210, 10666480, 6332040, 2128896
Offset: 0
Triangle begins:
[0] 1;
[1] 1;
[2] 1, 1;
[3] 2, 4;
[4] 6, 15, 3;
[5] 24, 61, 35;
[6] 120, 290, 270, 40;
[7] 720, 1646, 1974, 700;
[8] 5040, 11025, 14707, 8288, 1260;
[9] 40320, 85345, 117459, 90272, 29484;
...
Column 0 gives 1 together with
A000142.
Column 1 gives 1 - (n-1)! +
A006231(n).
T(2n,n) gives
A110468(n-1) for n>=1.
-
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
b(n-j, sort([l[], j])[2..3])*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n, [0$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 07 2021
-
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[ Append[l, j]][[2 ;; 3]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A290053
Triangle read by rows: Polynomial coefficients per comment.
Original entry on oeis.org
1, 1, 0, 1, -2, 3, 1, -5, 10, 0, 1, -9, 31, -39, 40, 1, -14, 77, -196, 252, 0, 1, -20, 162, -664, 1457, -1476, 1260, 1, -27, 303, -1809, 6168, -11772, 12176, 0, 1, -35, 520, -4250, 20773, -61595, 107730, -95400, 72576, 1, -44, 836, -8954, 59279, -249986
Offset: 1
Triangle begins:
1;
1, 0;
1, -2, 3;
1, -5, 10, 0;
1, -9, 31, -39, 40;
1, -14, 77, -196, 252, 0;
1, -20, 162, -664, 1457, -1476, 1260;
1, -27, 303, -1809, 6168, -11772, 12176, 0;
1, -35, 520, -4250, 20773, -61595, 107730, -95400, 72576;
...
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
- Gregory Gerard Wojnar, java_program which (1) creates Maple program to create polynomial referenced in Comment, and (2) creates list of polynomial portion's coefficients (without trailing 0 constant term is odd degree cases) which constitute the rows of this triangle. Each run of the program is for a single degree; to change the degree the user must modify the value of "level" in line 393 of the java code.
The final terms in odd-numbered rows are
A110468.
The negation of the second column give
A000096.
The 3rd column is
A290061; negation of 4th column is
A290071; 5th column is
A290127. Up to sign, all columns are given by polynomials described in the comments and examples of triangle
A290761.
A202768
Vandermonde determinant of the first n squares.
Original entry on oeis.org
1, 1, 3, 120, 151200, 10973491200, 73004442255360000, 64942882916646518784000000, 10615517921765466641283416064000000000, 419534029722194863260820186269027926016000000000000, 5103425917047830280023316797736216735574814664897331200000000000000
Offset: 0
a(3) = (4-1)(9-1)(9-4) = 120.
-
with(LinearAlgebra):
a:= n-> Determinant(VandermondeMatrix([i^2$i=1..n])):
seq(a(n), n=0..12); # Alois P. Heinz, Aug 21 2014
-
f[j_] := j^2; z = 15;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A202768 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A110468 *)
(* or *)
Det@TrigExpand@Array[#1^(2*#2)*Cosh[2*#2*ArcCsch[#1]]&,{#,#},{1,0}]&/@Range@16 (* Federico Provvedi, Jan 20 2021 *)
Table[Exp[(n^2-1/24)*Log[2]-(n/2+1/4)*Log[Pi]+3/2*Log@Glaisher+Log@BarnesG[1+n]+Log@BarnesG[3/2+n]-1/8]/n!,{n, 0, 40}] (* Federico Provvedi, Apr 01 2021 after Vaclav Kotesovec's formula *)
-
a(n)=prod(k=1,n,(2*k-1)!/k) /* Paul D. Hanna, Jan 02 2012 */
-
from math import prod
def A202768(n): return (prod(((m:=k+1<<1)*(m+1))**(n-1-k)//(k+1) for k in range(1,n-1))*3**(n-1)<Chai Wah Wu, Nov 26 2023
A346085
Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
Offset: 0
T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 2;
0, 15, 3, 0, 6;
0, 96, 0, 0, 0, 24;
0, 455, 105, 40, 0, 0, 120;
0, 4320, 0, 0, 0, 0, 0, 720;
0, 29295, 4725, 0, 1260, 0, 0, 0, 5040;
0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320;
0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880;
...
Even bisection of column k=2 gives
A346086.
T(2n,n) gives
A110468(n-1) for n >= 1.
-
b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..12);
-
b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
A203476
a(n) = v(n+1)/v(n), where v = A203475.
Original entry on oeis.org
5, 130, 8500, 1051076, 211255200, 62840245000, 25959932960000, 14224928867370000, 9986120745657472000, 8740787543400204500000, 9333385482079885824000000, 11942338721669302523305000000, 18038821394494464638896640000000
Offset: 1
-
[(&*[(n+1)^2 + j^2: j in [1..n]]): n in [1..20]]; // G. C. Greubel, Aug 28 2023
-
(* First program *)
f[j_]:= j^2; z = 15;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203475 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203476 *)
(* Second program *)
Table[Product[j^2 +(n+1)^2 , {j,n}], {n,20}] (* G. C. Greubel, Aug 28 2023 *)
-
[product(j^2+(n+1)^2 for j in range(1,n+1)) for n in range(1,21)] # G. C. Greubel, Aug 28 2023
A256881
a(n) = n!/ceiling(n/2).
Original entry on oeis.org
1, 2, 3, 12, 40, 240, 1260, 10080, 72576, 725760, 6652800, 79833600, 889574400, 12454041600, 163459296000, 2615348736000, 39520825344000, 711374856192000, 12164510040883200, 243290200817664000, 4644631106519040000, 102181884343418880000, 2154334728240414720000
Offset: 1
Cf.
A009445,
A052612,
A052616,
A052849,
A081457,
A208529,
A098558,
A107991,
A110468,
A229244,
A256031.
A229244
Number of n-permutations such that at least one cycle has size ceiling(n/2).
Original entry on oeis.org
1, 1, 3, 9, 40, 200, 1260, 8820, 72576, 653184, 6652800, 73180800, 889574400, 11564467200, 163459296000, 2451889440000, 39520825344000, 671854030848000, 12164510040883200, 231125690776780800, 4644631106519040000, 97537253236899840000, 2154334728240414720000, 49549698749529538560000, 1193170003333152768000000
Offset: 1
a(4) = 9 because we have:
1: (1)(2)(4,3)
2: (1)(3,2)(4)
3: (1)(4,2)(3)
4: (2,1)(3)(4)
5: (2,1)(4,3)
6: (3,1)(2)(4)
7: (3,1)(4,2)
8: (4,1)(2)(3)
9: (4,1)(3,2).
-
f[n_]:=If[EvenQ[n],Binomial[n,n/2](n/2-1)!((n/2)!-(n/2-1)!)+n!/2/(n/2)^2,Binomial[n,Ceiling[n/2]]Floor[n/2]!^2]; Table[f[n],{n,1,25}]
A273878
Numerator of (2*(n+1)!/(n+2)).
Original entry on oeis.org
1, 4, 3, 48, 40, 1440, 1260, 8960, 72576, 7257600, 6652800, 958003200, 889574400, 11623772160, 163459296000, 41845579776000, 39520825344000, 12804747411456000, 12164510040883200, 231704953159680000, 4644631106519040000
Offset: 0
The first few moments of p(x) are: 1, 4/3, 3, 48/5, 40, 1440/7, … .
-
a := proc(n): numer(2*(n+1)!/(n+2)) end: seq(a(n), n=0..20);
-
a(n) = numerator(2*(n+1)!/(n+2)) \\ Felix Fröhlich, Jun 09 2016
Showing 1-10 of 11 results.
Comments