A290761
Irregular triangle, read by rows, of coefficients of polynomials that are the "nonstandard" factor of polynomials yielding the columns (up to sign) of triangle A290053, beginning with column 3.
Original entry on oeis.org
3, 5, -6, 16, 1, 7, 16, 28, 0, 15, 225, 1265, 3707, 7120, 4900, -6480, 27648, 3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0, 63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400, 9, 531, 14010, 219106
Offset: 1
The first rows of the triangle are parsed as follows:
3, 5, -6, 16;
1, 7, 16, 28, 0;
15, 225, 1265, 3707, 7120, 4900, -6480, 27648;
3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0;
63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400;
9, 531, 14010, 219106, 2266137, 16325259, 83797380, 307998768, 802828704, 1433652560, 1651979520, 1239918336, 0.
The associated full polynomials giving the columns of triangle A290053 are then:
(1/24) * (N + 3) * (3*N^3 + 5*N^2 - 6*N + 16);
(N/48) * (N + 5)^2 * (1*N^3 + 7*N^2 + 16*N + 28);
(1/5760) * (N + 5) * (15*N^7 + 225*N^6 + 1265*N^5 + 3707*N^4 + 7120*N^3 + 4900*N^2 - 6480*N + 27648);
(N/11520) * (N + 7)^2 * (3*N^7 + 83*N^6 + 961*N^5 + 6201*N^4 + 24708*N^3 + 60700*N^2 + 87968*N + 85056); etc.
A290061
a(n) = (1/24)*(n + 3)*(3*n^3 + 5*n^2 - 6*n + 16).
Original entry on oeis.org
3, 10, 31, 77, 162, 303, 520, 836, 1277, 1872, 2653, 3655, 4916, 6477, 8382, 10678, 13415, 16646, 20427, 24817, 29878, 35675, 42276, 49752, 58177, 67628, 78185, 89931, 102952, 117337, 133178, 150570, 169611, 190402, 213047, 237653, 264330, 293191, 324352, 357932
Offset: 1
-
Table[(1/24)(n+3)(3n^3+5n^2-6n+16),{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{3,10,31,77,162},40] (* Harvey P. Dale, Oct 29 2018 *)
-
Vec(x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Jul 20 2017
-
vector(50,n,(n+3)*(3*n^3+5*n^2-6*n+16)/24) \\ Derek Orr, Jul 24 2017
A290071
a(n) = (1/48)*n*(n+5)^2*(1*n^3 + 7*n^2 + 16*n + 28).
Original entry on oeis.org
0, 39, 196, 664, 1809, 4250, 8954, 17346, 31434, 53949, 88500, 139744, 213571, 317304, 459914, 652250, 907284, 1240371, 1669524, 2215704, 2903125, 3759574, 4816746, 6110594, 7681694, 9575625, 11843364, 14541696, 17733639, 21488884, 25884250, 31004154, 36941096
Offset: 0
This is the negation of column 4 in triangle
A290053.
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,39,196,664,1809,4250,8954},40] (* Harvey P. Dale, Nov 15 2022 *)
-
concat(0, Vec(x*(39 - 77*x + 111*x^2 - 88*x^3 + 36*x^4 - 6*x^5) / (1 - x)^7 + O(x^50))) \\ Colin Barker, Jul 20 2017
-
vector(50,n,n*(n+5)^2*(n^3+7*n^2+16*n+28)/48) \\ Derek Orr, Jul 24 2017
A290127
a(n) = (1/5760)*(n + 5)*(15*n^7 + 225*n^6 + 1265*n^5 + 3707*n^4 + 7120*n^3 + 4900*n^2 - 6480*n + 27648).
Original entry on oeis.org
40, 252, 1457, 6168, 20773, 59279, 149271, 340821, 719187, 1422247, 2663718, 4763315, 8185110, 13585456, 21871946, 34274982, 52433634, 78497574, 115246975, 166232370, 235936571, 329960853, 455237713, 620272619, 835417269, 1113176985, 1468554972, 1919436277
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
This is column 5 of triangle
A290053.
-
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{40,252,1457,6168,20773,59279,149271,340821,719187},30] (* Harvey P. Dale, Jul 17 2024 *)
-
Vec(x*(40 - 108*x + 629*x^2 - 1233*x^3 + 1585*x^4 - 1306*x^5 + 666*x^6 - 192*x^7 + 24*x^8) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Aug 09 2017
A290723
a(n) = (1/11520) * n*(n+7)^2 * (3*n^7 + 83*n^6 + 961*n^5 + 6201*n^4 + 24708*n^3 + 60700*n^2 + 87968*n + 85056).
Original entry on oeis.org
0, 1476, 11772, 61595, 249986, 846306, 2495961, 6601035, 15978570, 35938992, 75976077, 152318826, 291665618, 536502980, 952506198, 1638627738, 2740602996, 4468742196, 7121033250, 11112754029, 17013984714, 25596622646, 37892734319, 55266332805, 79500944910
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
This is the negation of column 6 of triangle
A290053.
-
CoefficientList[Series[x (1476 - 4464 x + 13283 x^2 - 23639 x^3 + 28885 x^4 - 24502 x^5 + 14202 x^6 - 5376 x^7 + 1200 x^8 - 120 x^9)/(1 - x)^11, {x, 0, 24}], x] (* Michael De Vlieger, Aug 09 2017 *)
-
concat(0, Vec(x*(1476 - 4464*x + 13283*x^2 - 23639*x^3 + 28885*x^4 - 24502*x^5 + 14202*x^6 - 5376*x^7 + 1200*x^8 - 120*x^9) / (1 - x)^11 + O(x^30))) \\ Colin Barker, Aug 09 2017
Showing 1-5 of 5 results.
Comments