A290053
Triangle read by rows: Polynomial coefficients per comment.
Original entry on oeis.org
1, 1, 0, 1, -2, 3, 1, -5, 10, 0, 1, -9, 31, -39, 40, 1, -14, 77, -196, 252, 0, 1, -20, 162, -664, 1457, -1476, 1260, 1, -27, 303, -1809, 6168, -11772, 12176, 0, 1, -35, 520, -4250, 20773, -61595, 107730, -95400, 72576, 1, -44, 836, -8954, 59279, -249986
Offset: 1
Triangle begins:
1;
1, 0;
1, -2, 3;
1, -5, 10, 0;
1, -9, 31, -39, 40;
1, -14, 77, -196, 252, 0;
1, -20, 162, -664, 1457, -1476, 1260;
1, -27, 303, -1809, 6168, -11772, 12176, 0;
1, -35, 520, -4250, 20773, -61595, 107730, -95400, 72576;
...
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
- Gregory Gerard Wojnar, java_program which (1) creates Maple program to create polynomial referenced in Comment, and (2) creates list of polynomial portion's coefficients (without trailing 0 constant term is odd degree cases) which constitute the rows of this triangle. Each run of the program is for a single degree; to change the degree the user must modify the value of "level" in line 393 of the java code.
The final terms in odd-numbered rows are
A110468.
The negation of the second column give
A000096.
The 3rd column is
A290061; negation of 4th column is
A290071; 5th column is
A290127. Up to sign, all columns are given by polynomials described in the comments and examples of triangle
A290761.
A290761
Irregular triangle, read by rows, of coefficients of polynomials that are the "nonstandard" factor of polynomials yielding the columns (up to sign) of triangle A290053, beginning with column 3.
Original entry on oeis.org
3, 5, -6, 16, 1, 7, 16, 28, 0, 15, 225, 1265, 3707, 7120, 4900, -6480, 27648, 3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0, 63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400, 9, 531, 14010, 219106
Offset: 1
The first rows of the triangle are parsed as follows:
3, 5, -6, 16;
1, 7, 16, 28, 0;
15, 225, 1265, 3707, 7120, 4900, -6480, 27648;
3, 83, 961, 6201, 24708, 60700, 87968, 85056, 0;
63, 2457, 41580, 404866, 2532971, 10651177, 30102338, 56577724, 72856616, 36562176, -51101568, 298598400;
9, 531, 14010, 219106, 2266137, 16325259, 83797380, 307998768, 802828704, 1433652560, 1651979520, 1239918336, 0.
The associated full polynomials giving the columns of triangle A290053 are then:
(1/24) * (N + 3) * (3*N^3 + 5*N^2 - 6*N + 16);
(N/48) * (N + 5)^2 * (1*N^3 + 7*N^2 + 16*N + 28);
(1/5760) * (N + 5) * (15*N^7 + 225*N^6 + 1265*N^5 + 3707*N^4 + 7120*N^3 + 4900*N^2 - 6480*N + 27648);
(N/11520) * (N + 7)^2 * (3*N^7 + 83*N^6 + 961*N^5 + 6201*N^4 + 24708*N^3 + 60700*N^2 + 87968*N + 85056); etc.
Showing 1-2 of 2 results.
Comments