cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A066221 Bisection of A001189.

Original entry on oeis.org

0, 3, 25, 231, 2619, 35695, 568503, 10349535, 211799311, 4809701439, 119952692895, 3257843882623, 95680443760575, 3020676745975551, 101990226254706559, 3666624057550245375, 139813029266338603263
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

Programs

  • Mathematica
    Table[(-2)^n*HypergeometricU[-n, 3/2, -1/2] - 1, {n, 0, 16}] (* Jean-François Alcover, Apr 09 2014 *)

Extensions

More terms from Sascha Kurz, Mar 24 2002

A066222 Bisection of A001189.

Original entry on oeis.org

1, 9, 75, 763, 9495, 140151, 2390479, 46206735, 997313823, 23758664095, 618884638911, 17492190577599, 532985208200575, 17411277367391103, 606917269909048575, 22481059424730751231, 881687990282453393919
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

Comments

a(n) is the number of sets of disjoint pairs that can be chosen from 2*n items. - Ron Zeno (rzeno(AT)hotmail.com), Feb 06 2002

Extensions

More terms from Frank Ellermann, Jan 01 2002

A000085 Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504, 2390480, 10349536, 46206736, 211799312, 997313824, 4809701440, 23758664096, 119952692896, 618884638912, 3257843882624, 17492190577600, 95680443760576, 532985208200576, 3020676745975552
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of n X n symmetric permutation matrices.
a(n) is also the number of matchings (Hosoya index) in the complete graph K(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
a(n) is also the number of independent vertex sets and vertex covers in the n-triangular graph. - Eric W. Weisstein, May 22 2017
Equivalently, this is the number of graphs on n labeled nodes with degrees at most 1. - Don Knuth, Mar 31 2008
a(n) is also the sum of the degrees of the irreducible representations of the symmetric group S_n. - Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001
a(n) is the number of partitions of a set of n distinguishable elements into sets of size 1 and 2. - Karol A. Penson, Apr 22 2003
Number of tableaux on the edges of the star graph of order n, S_n (sometimes T_n). - Roberto E. Martinez II, Jan 09 2002
The Hankel transform of this sequence is A000178 (superfactorials). Sequence is also binomial transform of the sequence 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, ... (A001147 with interpolated zeros). - Philippe Deléham, Jun 10 2005
Row sums of the exponential Riordan array (e^(x^2/2),x). - Paul Barry, Jan 12 2006
a(n) is the number of nonnegative lattice paths of upsteps U = (1,1) and downsteps D = (1,-1) that start at the origin and end on the vertical line x = n in which each downstep (if any) is marked with an integer between 1 and the height of its initial vertex above the x-axis. For example, with the required integer immediately preceding each downstep, a(3) = 4 counts UUU, UU1D, UU2D, U1DU. - David Callan, Mar 07 2006
Equals row sums of triangle A152736 starting with offset 1. - Gary W. Adamson, Dec 12 2008
Proof of the recurrence relation a(n) = a(n-1) + (n-1)*a(n-2): number of involutions of [n] containing n as a fixed point is a(n-1); number of involutions of [n] containing n in some cycle (j, n), where 1 <= j <= n-1, is (n-1) times the number of involutions of [n] containing the cycle (n-1 n) = (n-1)*a(n-2). - Emeric Deutsch, Jun 08 2009
Number of ballot sequences (or lattice permutations) of length n. A ballot sequence B is a string such that, for all prefixes P of B, h(i) >= h(j) for i < j, where h(x) is the number of times x appears in P. For example, the ballot sequences of length 4 are 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1231, and 1234. The string 1221 does not appear in the list because in the 3-prefix 122 there are two 2's but only one 1. (Cf. p. 176 of Bruce E. Sagan: "The Symmetric Group"). - Joerg Arndt, Jun 28 2009
Number of standard Young tableaux of size n; the ballot sequences are obtained as a length-n vector v where v_k is the (number of the) row in which the number r occurs in the tableaux. - Joerg Arndt, Jul 29 2012
Number of factorial numbers of length n-1 with no adjacent nonzero digits. For example the 10 such numbers (in rising factorial radix) of length 3 are 000, 001, 002, 003, 010, 020, 100, 101, 102, and 103. - Joerg Arndt, Nov 11 2012
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013
a(n) is the number of permutations of [n] that avoid the consecutive patterns 123 and 132. Proof. Write a self-inverse permutation in standard cycle form: smallest entry in each cycle in first position, first entries decreasing. For example, (6,7)(3,4)(2)(1,5) is in standard cycle form. Then erase parentheses. This is a bijection to the permutations that avoid consecutive 123 and 132 patterns. - David Callan, Aug 27 2014
Getu (1991) says these numbers are also known as "telephone numbers". - N. J. A. Sloane, Nov 23 2015
a(n) is the number of elements x in the symmetric group S_n such that x^2 = e where e is the identity. - Jianing Song, Aug 22 2018 [Edited on Jul 24 2025]
a(n) is the number of congruence orbits of upper-triangular n X n matrices on skew-symmetric matrices, or the number of Borel orbits in largest sect of the type DIII symmetric space SO_{2n}(C)/GL_n(C). Involutions can also be thought of as fixed-point-free partial involutions. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020
From Thomas Anton, Apr 20 2020: (Start)
Apparently a(n) = b*c where b is odd iff a(n+b) (when a(n) is defined) is divisible by b.
Apparently a(n) = 2^(f(n mod 4)+floor(n/4))*q where f:{0,1,2,3}->{0,1,2} is given by f(0),f(1)=0, f(2)=1 and f(3)=2 and q is odd. (End)
From Iosif Pinelis, Mar 12 2021: (Start)
a(n) is the n-th initial moment of the normal distribution with mean 1 and variance 1. This follows because the moment generating function of that distribution is the e.g.f. of the sequence of the a(n)'s.
The recurrence a(n) = a(n-1) + (n-1)*a(n-2) also follows, by writing E(Z+1)^n=EZ(Z+1)^(n-1)+E(Z+1)^(n-1), where Z is a standard normal random variable, and then taking the first of the latter two integrals by parts. (End)

Examples

			Sequence starts 1, 1, 2, 4, 10, ... because possibilities are {}, {A}, {AB, BA}, {ABC, ACB, BAC, CBA}, {ABCD, ABDC, ACBD, ADCB, BACD, BADC, CBAD, CDAB, DBCA, DCBA}. - _Henry Bottomley_, Jan 16 2001
G.f. = 1 + x + 2*x^2 + 4*x^4 + 10*x^5 + 26*x^6 + 76*x^7 + 232*x^8 + 764*x^9 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(4) = 10 standard Young tableaux:
  1 2 3 4
.
  1 2   1 3   1 2 3   1 2 4   1 3 4
  3 4   2 4   4       3       2
.
  1 2   1 3   1 4
  3     2     2
  4     4     3
.
  1
  2
  3
  4
The a(0) = 1 through a(4) = 10 set partitions into singletons or pairs:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}    {{1,2},{3,4}}
             {{1},{2}}  {{1,2},{3}}    {{1,3},{2,4}}
                        {{1,3},{2}}    {{1,4},{2,3}}
                        {{1},{2},{3}}  {{1},{2},{3,4}}
                                       {{1},{2,3},{4}}
                                       {{1,2},{3},{4}}
                                       {{1},{2,4},{3}}
                                       {{1,3},{2},{4}}
                                       {{1,4},{2},{3}}
                                       {{1},{2},{3},{4}}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 32, 911.
  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
  • W. Fulton, Young Tableaux, Cambridge, 1997.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.1.4, p. 65.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, p. 6.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

See also A005425 for another version of the switchboard problem.
Equals 2 * A001475(n-1) for n>1.
First column of array A099020.
A069943(n+1)/A069944(n+1) = a(n)/A000142(n) in lowest terms.
Cf. A152736, A128229. - Gary W. Adamson, Dec 12 2008
Diagonal of A182172. - Alois P. Heinz, May 30 2012
Row sums of: A047884, A049403, A096713 (absolute value), A100861, A104556 (absolute value), A111924, A117506 (M_4 numbers), A122848, A238123.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Haskell
    a000085 n = a000085_list !! n
      a000085_list = 1 : 1 : zipWith (+)
        (zipWith (*) [1..] a000085_list) (tail a000085_list) -- Reinhard Zumkeller, May 16 2013
    
  • Maple
    A000085 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else procname(n-1)+(n-1)*procname(n-2); fi; end;
    with(combstruct):ZL3:=[S,{S=Set(Cycle(Z,card<3))}, labeled]:seq(count(ZL3,size=n),n=0..25); # Zerinvary Lajos, Sep 24 2007
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(2):seq(count(A, size=n), n=0..25); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    <Roger L. Bagula, Oct 06 2006 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *)
    a[ n_] := Sum[(2 k - 1)!! Binomial[ n, 2 k], {k, 0, n/2}]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricU[ -n/2, 1/2, -1/2] / (-1/2)^(n/2)]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x + x^2 / 2], {x, 0, n}]]; (* Michael Somos, Jun 01 2013 *)
    Table[(I/Sqrt[2])^n HermiteH[n, -I/Sqrt[2]], {n, 0, 100}] (* Emanuele Munarini, Mar 02 2016 *)
    a[n_] := Sum[StirlingS1[n, k]*2^k*BellB[k, 1/2], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 18 2017, after Emanuele Munarini *)
    RecurrenceTable[{a[n] == a[n-1] + (n-1)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 20}] (* Joan Ludevid, Jun 17 2022 *)
    sds[{}]:={{}};sds[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sds[Complement[set,s]]]/@Cases[Subsets[set,{1,2}],{i,_}]; Table[Length[sds[Range[n]]],{n,0,10}] (* Gus Wiseman, Jan 11 2021 *)
  • Maxima
    B(n,x):=sum(stirling2(n,k)*x^k,k,0,n);
      a(n):=sum(stirling1(n,k)*2^k*B(k,1/2),k,0,n);
      makelist(a(n),n,0,40); /* Emanuele Munarini, May 16 2014 */
    
  • Maxima
    makelist((%i/sqrt(2))^n*hermite(n,-%i/sqrt(2)),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x + x^2 / 2 + x * O(x^n)), n))}; /* Michael Somos, Nov 15 2002 */
    
  • PARI
    N=66; x='x+O('x^N); egf=exp(x+x^2/2); Vec(serlaplace(egf)) \\ Joerg Arndt, Mar 07 2013
    
  • Python
    from math import factorial
    def A000085(n): return sum(factorial(n)//(factorial(n-(k<<1))*factorial(k)*(1<>1)+1)) # Chai Wah Wu, Aug 31 2023
  • Sage
    A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
    [simplify(A000085(n)) for n in range(28)] # Peter Luschny, Aug 21 2014
    
  • Sage
    def a85(n): return sum(factorial(n) / (factorial(n-2*k) * 2**k * factorial(k)) for k in range(1+n//2))
    for n in range(100): print(n, a85(n)) # Manfred Scheucher, Jan 07 2018
    

Formula

D-finite with recurrence a(0) = a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n>1.
E.g.f.: exp(x+x^2/2).
a(n) = a(n-1) + A013989(n-2) = A013989(n)/(n+1) = 1+A001189(n).
a(n) = Sum_{k=0..floor(n/2)} n!/((n-2*k)!*2^k*k!).
a(m+n) = Sum_{k>=0} k!*binomial(m, k)*binomial(n, k)*a(m-k)*a(n-k). - Philippe Deléham, Mar 05 2004
For n>1, a(n) = 2*(A000900(n) + A000902(floor(n/2))). - Max Alekseyev, Oct 31 2015
The e.g.f. y(x) satisfies y^2 = y''y' - (y')^2.
a(n) ~ c*(n/e)^(n/2)exp(n^(1/2)) where c=2^(-1/2)exp(-1/4). [Chowla]
a(n) = HermiteH(n, 1/(sqrt(2)*i))/(-sqrt(2)*i)^n, where HermiteH are the Hermite polynomials. - Karol A. Penson, May 16 2002
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
For asymptotics see the Robinson paper.
a(n) = Sum_{m=0..n} A099174(n,m). - Roger L. Bagula, Oct 06 2006
O.g.f.: A(x) = 1/(1-x-1*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Gary W. Adamson, Dec 29 2008: (Start)
a(n) = (n-1)*a(n-2) + a(n-1); e.g., a(7) = 232 = 6*26 + 76.
Starting with offset 1 = eigensequence of triangle A128229. (End)
a(n) = (1/sqrt(2*Pi))*Integral_{x=-oo..oo} exp(-x^2/2)*(x+1)^n. - Groux Roland, Mar 14 2011
Row sums of |A096713|. a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A047974 and A080599. - Peter Bala, Dec 07 2011
From Sergei N. Gladkovskii, Dec 03 2011 - Oct 28 2013: (Start)
Continued fractions:
E.g.f.: 1+x*(2+x)/(2*G(0)-x*(2+x)) where G(k)=1+x*(x+2)/(2+2*(k+1)/G(k+1)).
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - x*(k+1)/Q(k+1)).
G.f.: -1/(x*Q(0)) where Q(k) = 1 - 1/x - (k+1)/Q(k+1).
G.f.: T(0)/(1-x) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)^2/T(k+1)). (End)
a(n) ~ (1/sqrt(2)) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
a(n) = Sum_{k=0..n} s(n,k)*(-1)^(n-k)*2^k*B(k,1/2), where the s(n,k) are (signless) Stirling numbers of the first kind, and the B(n,x) = Sum_{k=0..n} S(n,k)*x^k are the Stirling polynomials, where the S(n,k) are the Stirling numbers of the second kind. - Emanuele Munarini, May 16 2014
a(n) = hyper2F0([-n/2,(1-n)/2],[],2). - Peter Luschny, Aug 21 2014
0 = a(n)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Aug 22 2014
From Peter Bala, Oct 06 2021: (Start)
a(n+k) == a(n) (mod k) for all n >= 0 and all positive odd integers k.
Hence for each odd k, the sequence obtained by taking a(n) modulo k is a periodic sequence and the exact period divides k. For example, taking a(n) modulo 7 gives the purely periodic sequence [1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, ...] of period 7. For similar results see A047974 and A115329. (End)

A080510 Triangle read by rows: T(n,k) gives the number of set partitions of {1,...,n} with maximum block length k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 90, 30, 6, 1, 1, 231, 420, 175, 42, 7, 1, 1, 763, 2016, 1015, 280, 56, 8, 1, 1, 2619, 10024, 6111, 1890, 420, 72, 9, 1, 1, 9495, 51640, 38010, 12978, 3150, 600, 90, 10, 1, 1, 35695, 276980, 244035, 91938, 24024, 4950, 825, 110, 11, 1
Offset: 1

Views

Author

Wouter Meeussen, Mar 22 2003

Keywords

Comments

Row sums are A000110 (Bell numbers). Second column is A001189 (Degree n permutations of order exactly 2).
From Peter Luschny, Mar 09 2009: (Start)
Partition product of Product_{j=0..n-1} ((k + 1)*j - 1) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A036040.
Same partition product with length statistic is A008277.
Diagonal a(A000217) = A000012.
Row sum is A000110. (End)
From Gary W. Adamson, Feb 24 2011: (Start)
Construct an array in which the n-th row is the partition function G(n,k), where G(n,1),...,G(n,6) = A000012, A000085, A001680, A001681, A110038, A148092, with the first few rows
1, 1, 1, 1, 1, 1, 1, ... = A000012
1, 2, 4, 10, 26, 76, 232, ... = A000085
1, 2, 5, 14, 46, 166, 652, ... = A001680
1, 2, 5, 15, 51, 196, 827, ... = A001681
1, 2 5 15 52 202 869, ... = A110038
1, 2, 5 15 52 203 876, ... = A148092
...
Rows tend to A000110, the Bell numbers. Taking finite differences from the top, then reorienting, we obtain triangle A080510.
The n-th row of the array is the eigensequence of an infinite lower triangular matrix with n diagonals of Pascal's triangle starting from the right and the rest zeros. (End)

Examples

			T(4,3) = 4 since there are 4 set partitions with longest block of length 3: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}} and {{1,2,4},{3}}.
Triangle begins:
  1;
  1,    1;
  1,    3,     1;
  1,    9,     4,    1;
  1,   25,    20,    5,    1;
  1,   75,    90,   30,    6,   1;
  1,  231,   420,  175,   42,   7,  1;
  1,  763,  2016, 1015,  280,  56,  8,  1;
  1, 2619, 10024, 6111, 1890, 420, 72,  9,  1;
  ...
		

Crossrefs

Columns k=1..10 give: A000012 (for n>0), A001189, A229245, A229246, A229247, A229248, A229249, A229250, A229251, A229252. - Alois P. Heinz, Sep 17 2013
T(2n,n) gives A276961.
Take differences along rows of A229223. - N. J. A. Sloane, Jan 10 2018

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> b(n, k) -b(n, k-1):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Apr 20 2012
  • Mathematica
    << DiscreteMath`NewCombinatorica`; Table[Length/@Split[Sort[Max[Length/@# ]&/@SetPartitions[n]]], {n, 12}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; T[n_, k_] := b[n, k]-b[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

E.g.f. for k-th column: exp(exp(x)*GAMMA(k, x)/(k-1)!-1)*(exp(x^k/k!)-1). - Vladeta Jovovic, Feb 04 2005
From Peter Luschny, Mar 09 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*...*a_n!),
f^a = (f_1/1!)^a_1*...*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-1) = (-1)^n. (End)
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = C(2n,n)*(A000110(n)-1/2) for n>0.
T(n,m) = C(n,m)*A000110(n-m) for 2m > n > 0. (End)

A001471 Number of degree-n permutations of order exactly 3.

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110, 1191911840, 7678566800, 53474964992, 418199988338, 3044269834280, 23364756531620, 199008751634000, 1605461415071822
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of non-symmetric permutation matrices A of dimension n such that A^2 is the transpose of A. - Torlach Rush, Jul 09 2020

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    a[n_] := HypergeometricPFQ[{1/3-n/3, 2/3-n/3, -n/3}, {}, -9] - 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2011 *)
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,c+(1+a)(n-1)(n-2)}; NestList[nxt,{3,0,0,0},25][[;;,2]] (* Harvey P. Dale, Mar 09 2024 *)
  • PARI
    a(n)=sum(j=1,n\3, n!/(j!*(n-3*j)!*(3^j))) \\ Charles R Greathouse IV, Jun 21 2017
    
  • PARI
    first(n)=my(v=vector(n+1)); for(i=3,n, v[i+1]=v[i] + (1+v[i-2])*(i-1)*(i-2)); v \\ Charles R Greathouse IV, Jul 10 2020
    
  • Sage
    m = 30; T = taylor(exp(x + x^3/3) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019

Formula

From Henry Bottomley, Jan 26 2001: (Start)
a(n) = a(n-1) + (1 + a(n-3))*(n-1)(n-2).
a(n) = Sum_{j=1..floor(n/3)} n!/(j!*(n-3*j)!*(3^j)).
a(n) = A001470(n) - 1. (End)
E.g.f.: exp(x + x^3/3) - exp(x).

A001473 Number of degree-n permutations of order exactly 4.

Original entry on oeis.org

0, 0, 0, 6, 30, 180, 840, 5460, 30996, 209160, 1290960, 9753480, 69618120, 571627056, 4443697440, 40027718640, 346953934320, 3369416698080, 31421601510336, 328430320909920, 3331475969159520, 37124416523261760
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 +x^4/4) -Exp(x+x^2/2) )); [0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // G. C. Greubel, May 14 2019
    
  • Mathematica
    Rest@With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4] - Exp[x +x^2/2], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 14 2019 *)
  • PARI
    my(x=xx+O(xx^33)); concat([0,0,0], Vec(serlaplace(-exp(x+1/2*x^2) +exp(x+1/2*x^2+1/4*x^4)))) \\ Michel Marcus, Dec 12 2014
    
  • Sage
    m = 30; T = taylor(exp(x +x^2/2 +x^4/4) - exp(x+x^2/2), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019

Formula

E.g.f.: exp(x + x^2/2 + x^4/4) - exp(x + x^2/2).

Extensions

More terms from Vladeta Jovovic, Apr 14 2001

A057731 Irregular triangle read by rows: T(n,k) = number of elements of order k in symmetric group S_n, for n >= 1, 1 <= k <= g(n), where g(n) = A000793(n) is Landau's function.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 20, 30, 24, 20, 1, 75, 80, 180, 144, 240, 1, 231, 350, 840, 504, 1470, 720, 0, 0, 504, 0, 420, 1, 763, 1232, 5460, 1344, 10640, 5760, 5040, 0, 4032, 0, 3360, 0, 0, 2688, 1, 2619, 5768, 30996, 3024, 83160, 25920, 45360, 40320, 27216, 0, 30240, 0, 25920, 24192, 0, 0, 0, 0, 18144
Offset: 1

Views

Author

Roger Cuculière, Oct 29 2000

Keywords

Comments

Every row for n >= 7 contains zeros. Landau's function quickly becomes > 2*n, and there is always a prime between n and 2*n. T(n,p) = 0 for such a prime p. - Franklin T. Adams-Watters, Oct 25 2011

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,   2;
  1,   9,   8,   6;
  1,  25,  20,  30,  24,   20;
  1,  75,  80, 180, 144,  240;
  1, 231, 350, 840, 504, 1470, 720, 0, 0, 504, 0, 420;
  ...
		

References

  • Herbert S. Wilf, "The asymptotics of e^P(z) and the number of elements of each order in S_n." Bull. Amer. Math. Soc., 15.2 (1986), 225-232.

Crossrefs

Cf. A000793, also A054522 (for cyclic group), A057740 (alternating group), A057741 (dihedral group).
Rows sums give A000142, last elements of rows give A074859, columns k=2, 3, 5, 7, 11 give A001189, A001471, A059593, A153760, A153761. - Alois P. Heinz, Feb 16 2013
Main diagonal gives A074351.
Cf. A222029.

Programs

  • Magma
    {* Order(g) : g in Sym(6) *};
    
  • Maple
    with(group):
    for n from 1 do
        f := [seq(0,i=1..n!)] ;
        mknown := 0 ;
        # loop through the permutations of n
        Sn := combinat[permute](n) ;
        for per in Sn do
            # write this permutation in cycle notation
            gen := convert(per,disjcyc) ;
            # compute the list of lengths of the cycles, then the lcm of these
            cty := [seq(nops(op(i,gen)),i=1..nops(gen))] ;
            if cty <> [] then
                lcty := lcm(op(cty)) ;
            else
                lcty := 1 ;
            end if;
            f := subsop(lcty = op(lcty,f)+1,f) ;
            mknown := max(mknown,lcty) ;
        end do:
        ff := add(el,el=f) ;
        print(seq(f[i],i=1..mknown)) ;
    end do: # R. J. Mathar, May 26 2014
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
          *b(n-j, ilcm(g, j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 1)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jul 11 2017
  • Mathematica
    <Jean-François Alcover, Aug 31 2016 *)
    b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j-1)!*b[n-j, LCM[g, j]]* Binomial[n-1, j-1], {j, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, May 03 2019, after Alois P. Heinz *)
  • PARI
    T(n,k)={n!*polcoeff(sumdiv(k, i, moebius(k/i)*exp(sumdiv(i, j, x^j/j) + O(x*x^n))), n)} \\ Andrew Howroyd, Jul 02 2018

Formula

Sum_{k=1..A000793(n)} k*T(n,k) = A060014(n); A000793 = Landau's function.

Extensions

More terms from N. J. A. Sloane, Nov 01 2000

A061121 Number of degree-n permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 20, 240, 1470, 10640, 83160, 584640, 4496030, 42658440, 371762820, 3594871280, 38650622010, 396457108320, 4330689250160, 53963701424640, 641211774798510, 8205894865096280, 113786291585124060
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^2/2]-1)(Exp[x^3/3]-1)Exp[x],{x,0,nn}],x]//Rest  (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x)-exp(x+1/2*x^2)-exp(x+1/3*x^3)+exp(x+1/2*x^2+1/3*x^3+1/6*x^6).

A061128 Number of degree-n permutations of order exactly 30.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 120960, 2661120, 27941760, 536215680, 6901614720, 90084234240, 1540714855680, 33110649411840, 554845922991360, 8393918663370240, 141081442901118720, 2869353360741853440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - exp(x) + exp(x + 1/2*x^2) + exp(x + 1/3*x^3) + exp(x + 1/5*x^5) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) - exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) - exp(x + 1/3*x^3 + 1/5*x^5 + 1/15*x^15) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/5*x^5 + 1/6*x^6 + 1/10*x^10 + 1/15*x^15 + 1/30*x^30).

A048099 Number of degree-n even permutations of order exactly 2.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 315, 1323, 5355, 18315, 63855, 272415, 1264263, 5409495, 22302735, 101343375, 507711375, 2495918223, 11798364735, 58074029055, 309240315615, 1670570920095, 8792390355903, 46886941456575, 264381946998975, 1533013006902975, 8785301059346175, 50439885753378303
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001189, A051695. A column of A057740.

Programs

  • Mathematica
    Table[Sum[Binomial[n , 4 i] (4 i)!/(2^(2 i) (2 i)!), {i, 1, Floor[n/4]}], {n,1,22}] (* Luis Manuel Rivera Martínez, May 16 2018 *)
  • PARI
    a(n) = sum(i=1, n\4, binomial(n,4*i)*(4*i)!/(2^(2*i)*(2*i)!)); \\ Michel Marcus, May 17 2018
    
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + A) + exp(x - x^2/2 + A) - 2*exp(x + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = (A001189(n) + A051684(n))/2.
a(n) = Sum_{i=1..floor(n/4)} binomial(n,4i)(4i)!/(2^(2i)(2i)!). - Luis Manuel Rivera Martínez, May 16 2018
E.g.f.: (exp(x + x^2/2) + exp(x - x^2/2))/2 - exp(x). - Andrew Howroyd, Feb 01 2020
Showing 1-10 of 39 results. Next