A001189
Number of degree-n permutations of order exactly 2.
Original entry on oeis.org
0, 1, 3, 9, 25, 75, 231, 763, 2619, 9495, 35695, 140151, 568503, 2390479, 10349535, 46206735, 211799311, 997313823, 4809701439, 23758664095, 119952692895, 618884638911, 3257843882623, 17492190577599, 95680443760575, 532985208200575, 3020676745975551
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 1..800
- N. Chheda, M. K. Gupta, RNA as a Permutation, arXiv:1403.5477 [q-bio.BM], 2014.
- R. B. Herrera, The number of elements of given period in finite symmetric group, Amer. Math. Monthly 64, 1957, 488-490.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
- J. Rangel-Mondragon, Selected Themes in Computational Non-Euclidean Geometry: Part 1, The Mathematica Journal 15 (2013); http://www.mathematica-journal.com/data/uploads/2013/07/Rangel-Mondragon_Selected-1.pdf
- Martin Svatoš, Peter Jung, Jan Tóth, Yuyi Wang, and Ondřej Kuželka, On Discovering Interesting Combinatorial Integer Sequences, arXiv:2302.04606 [cs.LO], 2023, p. 17.
- Thotsaporn Thanatipanonda, Inversions and major index for permutations, Math. Mag., April 2004.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2) -Exp(x) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, May 14 2019
-
a:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
a(n-1) +(n-1) *(1+a(n-2)))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 24 2012
# alternative:
A001189 := proc(n)
local a,prs,p,k ;
a := 0 ;
for prs from 1 to n/2 do
p := product(binomial(n-2*k,2),k=0..prs-1) ;
a := a+p/prs!;
end do:
a;
end proc:
seq(A001189(n),n=1..13) ; # R. J. Mathar, Jan 04 2017
-
RecurrenceTable[{a[1]==0,a[2]==1,a[n]==a[n-1]+(1+a[n-2])(n-1)},a[n],{n,25}] (* Harvey P. Dale, Jul 27 2011 *)
-
{a(n) = sum(j=1,floor(n/2), n!/(j!*(n-2*j)!*2^j))}; \\ G. C. Greubel, May 14 2019
-
m = 30; T = taylor(exp(x +x^2/2) - exp(x), x, 0, m); a=[factorial(n)*T.coefficient(x, n) for n in (0..m)]; a[1:] # G. C. Greubel, May 14 2019
A001471
Number of degree-n permutations of order exactly 3.
Original entry on oeis.org
0, 0, 0, 2, 8, 20, 80, 350, 1232, 5768, 31040, 142010, 776600, 4874012, 27027728, 168369110, 1191911840, 7678566800, 53474964992, 418199988338, 3044269834280, 23364756531620, 199008751634000, 1605461415071822
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3) )); [Factorial(n-1)*b[n]-1: n in [1..m]]; // G. C. Greubel, May 14 2019
-
a[n_] := HypergeometricPFQ[{1/3-n/3, 2/3-n/3, -n/3}, {}, -9] - 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2011 *)
nxt[{n_,a_,b_,c_}]:={n+1,b,c,c+(1+a)(n-1)(n-2)}; NestList[nxt,{3,0,0,0},25][[;;,2]] (* Harvey P. Dale, Mar 09 2024 *)
-
a(n)=sum(j=1,n\3, n!/(j!*(n-3*j)!*(3^j))) \\ Charles R Greathouse IV, Jun 21 2017
-
first(n)=my(v=vector(n+1)); for(i=3,n, v[i+1]=v[i] + (1+v[i-2])*(i-1)*(i-2)); v \\ Charles R Greathouse IV, Jul 10 2020
-
m = 30; T = taylor(exp(x + x^3/3) -exp(x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 14 2019
A061121
Number of degree-n permutations of order exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 20, 240, 1470, 10640, 83160, 584640, 4496030, 42658440, 371762820, 3594871280, 38650622010, 396457108320, 4330689250160, 53963701424640, 641211774798510, 8205894865096280, 113786291585124060
Offset: 1
-
nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^2/2]-1)(Exp[x^3/3]-1)Exp[x],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)
A061128
Number of degree-n permutations of order exactly 30.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 120960, 2661120, 27941760, 536215680, 6901614720, 90084234240, 1540714855680, 33110649411840, 554845922991360, 8393918663370240, 141081442901118720, 2869353360741853440
Offset: 1
A051695
Number of degree-n even permutations of order exactly 4.
Original entry on oeis.org
0, 0, 0, 0, 0, 90, 630, 3780, 18900, 94500, 457380, 3825360, 31505760, 312432120, 2704501800, 22984481520, 179863997040, 1531709328240, 13078616488560, 147223414987200, 1657733805020160, 20131890668255520, 226464779237447520, 2542924546378413120, 27053572399079688000
Offset: 1
-
m = 26; ((Exp[x + x^2/2 + x^4/4] + Exp[x - x^2/2 - x^4/4] - Exp[x + x^2/2] - Exp[x - x^2/2])/2 + O[x]^m // CoefficientList[#, x]& // Rest) * Range[m - 1]! (* Jean-François Alcover, Feb 09 2020, after Andrew Howroyd *)
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + x^4/4 + A) + exp(x - x^2/2 - x^4/4 + A) - exp(x + x^2/2 + A) - exp(x - x^2/2 + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020
A061132
Number of degree-n even permutations of order dividing 10.
Original entry on oeis.org
1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0
For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
-
With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019
A061133
Number of degree-n even permutations of order exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 210, 5040, 37800, 201600, 2044350, 25530120, 213993780, 1692490800, 19767998250, 232823791200, 2235629476080, 23171222430720, 294649445112750, 4300403589581400, 55176842335916700, 660577269463243440
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061135
Number of degree-n even permutations of order exactly 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 9072, 90720, 498960, 25945920, 321080760, 2460970512, 14552417880, 115251776640, 4603779180000, 72193873752000, 681167139805152, 16976210865344640, 304992335584165320, 4548189212204243760
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061129
Number of degree-n even permutations of order dividing 4.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 99856, 475696, 3889216, 31778176, 313696384, 2709911296, 23006784256, 179965340416, 1532217039616, 13081112406784, 147235213351936, 1657791879049216, 20132199908571136, 226466449808367616, 2542933338768769024
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2 + x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
-
With[{n=30}, CoefficientList[Series[Exp[x]*Cosh[x^2/2 + x^4/4], {x, 0, n}], x]*Range[0, n]!] (* G. C. Greubel, Jul 02 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2 + x^4/4) )) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x)*cosh(x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A061136
Number of degree-n odd permutations of order dividing 4.
Original entry on oeis.org
0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
Showing 1-10 of 24 results.
Comments