cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A048099 Number of degree-n even permutations of order exactly 2.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 315, 1323, 5355, 18315, 63855, 272415, 1264263, 5409495, 22302735, 101343375, 507711375, 2495918223, 11798364735, 58074029055, 309240315615, 1670570920095, 8792390355903, 46886941456575, 264381946998975, 1533013006902975, 8785301059346175, 50439885753378303
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001189, A051695. A column of A057740.

Programs

  • Mathematica
    Table[Sum[Binomial[n , 4 i] (4 i)!/(2^(2 i) (2 i)!), {i, 1, Floor[n/4]}], {n,1,22}] (* Luis Manuel Rivera Martínez, May 16 2018 *)
  • PARI
    a(n) = sum(i=1, n\4, binomial(n,4*i)*(4*i)!/(2^(2*i)*(2*i)!)); \\ Michel Marcus, May 17 2018
    
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + A) + exp(x - x^2/2 + A) - 2*exp(x + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = (A001189(n) + A051684(n))/2.
a(n) = Sum_{i=1..floor(n/4)} binomial(n,4i)(4i)!/(2^(2i)(2i)!). - Luis Manuel Rivera Martínez, May 16 2018
E.g.f.: (exp(x + x^2/2) + exp(x - x^2/2))/2 - exp(x). - Andrew Howroyd, Feb 01 2020

A061132 Number of degree-n even permutations of order dividing 10.

Original entry on oeis.org

1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Examples

			For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10).

A061133 Number of degree-n even permutations of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 210, 5040, 37800, 201600, 2044350, 25530120, 213993780, 1692490800, 19767998250, 232823791200, 2235629476080, 23171222430720, 294649445112750, 4300403589581400, 55176842335916700, 660577269463243440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - 1/2*exp(x + 1/2*x^2) - 1/2*exp(x - 1/2*x^2) - exp(x + 1/3*x^3) + 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).

A061135 Number of degree-n even permutations of order exactly 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 9072, 90720, 498960, 25945920, 321080760, 2460970512, 14552417880, 115251776640, 4603779180000, 72193873752000, 681167139805152, 16976210865344640, 304992335584165320, 4548189212204243760
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - 1/2*exp(x + 1/2*x^2) - 1/2*exp(x - 1/2*x^2) - exp(x + 1/5*x^5) + 1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10).

A061129 Number of degree-n even permutations of order dividing 4.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 99856, 475696, 3889216, 31778176, 313696384, 2709911296, 23006784256, 179965340416, 1532217039616, 13081112406784, 147235213351936, 1657791879049216, 20132199908571136, 226466449808367616, 2542933338768769024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2 + x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
    
  • Mathematica
    With[{n=30}, CoefficientList[Series[Exp[x]*Cosh[x^2/2 + x^4/4], {x, 0, n}], x]*Range[0, n]!] (* G. C. Greubel, Jul 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2 + x^4/4) )) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    m = 30; T = taylor(exp(x)*cosh(x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019

Formula

E.g.f.: exp(x)*cosh(x^2/2 + x^4/4).

A057740 Irregular triangle read by rows: T(n,k) is the number of elements of alternating group A_n having order k, for n >= 1, 1 <= k <= A051593(n).

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 3, 8, 1, 15, 20, 0, 24, 1, 45, 80, 90, 144, 1, 105, 350, 630, 504, 210, 720, 1, 315, 1232, 3780, 1344, 5040, 5760, 0, 0, 0, 0, 0, 0, 0, 2688, 1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192
Offset: 1

Views

Author

Roger Cuculière, Oct 29 2000

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,    0,    2;
  1,    3,    8;
  1,   15,   20,     0,   24;
  1,   45,   80,    90,  144;
  1,  105,  350,   630,  504,   210,   720;
  1,  315, 1232,  3780, 1344,  5040,  5760, 0,     0,    0, 0,     0, 0, 0,  2688;
  1, 1323, 5768, 18900, 3024, 37800, 25920, 0, 40320, 9072, 0, 15120, 0, 0, 24192;
...
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Programs

  • Magma
    {* Order(g) : g in Alt(6) *};
  • Mathematica
    row[n_] := (orders = PermutationOrder /@ GroupElements[AlternatingGroup[n] ]; Table[Count[orders, k], {k, 1, Max[orders]}]); Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Aug 31 2016 *)

Extensions

More terms from N. J. A. Sloane, Nov 01 2000
Missing zero in the row for A_9 inserted by N. J. A. Sloane, Mar 27 2015

A061136 Number of degree-n odd permutations of order dividing 4.

Original entry on oeis.org

0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/4*x^4) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4).

A061131 Number of degree-n even permutations of order dividing 8.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 326656, 2970496, 33826816, 291237376, 2129910784, 13607197696, 324498374656, 4599593353216, 52741679343616, 495632154179584, 7127212838772736, 94268828128854016, 2098358019107700736, 34030412427789500416
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8))) \\ Michel Marcus, Jun 18 2019

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061140 Number of degree-n odd permutations of order exactly 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - 1/2*exp(x + 1/2*x^2 + 1/4*x^4) + 1/2*exp(x - 1/2*x^2 - 1/4*x^4) + 1/2*exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - 1/2*exp(x - 1/2*x^2 - 1/4*x^4 - 1/8*x^8).

A061130 Number of degree-n even permutations of order dividing 6.

Original entry on oeis.org

1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + 1/2*exp(x - 1/2*x^2 + 1/3*x^3 - 1/6*x^6).
Showing 1-10 of 16 results. Next