A000793 Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n.
1, 1, 2, 3, 4, 6, 6, 12, 15, 20, 30, 30, 60, 60, 84, 105, 140, 210, 210, 420, 420, 420, 420, 840, 840, 1260, 1260, 1540, 2310, 2520, 4620, 4620, 5460, 5460, 9240, 9240, 13860, 13860, 16380, 16380, 27720, 30030, 32760, 60060, 60060, 60060, 60060, 120120
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 6*x^6 + 12*x^7 + 15*x^8 + ... From _Joerg Arndt_, Feb 15 2013: (Start) The 15 partitions of 7 are the following: [ #] [ partition ] lcm( parts ) [ 1] [ 1 1 1 1 1 1 1 ] 1 [ 2] [ 1 1 1 1 1 2 ] 2 [ 3] [ 1 1 1 1 3 ] 3 [ 4] [ 1 1 1 2 2 ] 2 [ 5] [ 1 1 1 4 ] 4 [ 6] [ 1 1 2 3 ] 6 [ 7] [ 1 1 5 ] 5 [ 8] [ 1 2 2 2 ] 2 [ 9] [ 1 2 4 ] 4 [10] [ 1 3 3 ] 3 [11] [ 1 6 ] 6 [12] [ 2 2 3 ] 6 [13] [ 2 5 ] 10 [14] [ 3 4 ] 12 (max) [15] [ 7 ] 7 The maximum (LCM) value attained is 12, so a(7) = 12. (End)
References
- J. Haack, "The Mathematics of Steve Reich's Clapping Music," in Bridges: Mathematical Connections in Art, Music and Science: Conference Proceedings, 1998, Reza Sarhangi (ed.), 87-92.
- Edmund Georg Hermann Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 223.
- J.-L. Nicolas, On Landau's function g(n), pp. 228-240 of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
- S. M. Shah, An inequality for the arithmetical function g(x), J. Indian Math. Soc., 3 (1939), 316-318. [See below for a scan of the first page.]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 0..814 from David Wasserman)
- Giedrius Alkauskas, Colouring monohedral tilings: defects and grain boundaries, 2024.
- Joerg Arndt, Table of n, a(n) for n = 0..65536 (xz compressed).
- Jan Brandts and A. Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- Marc Deléglise, Jean-Louis Nicolas, and Paul Zimmermann, Landau's function for one million billions, arXiv:0803.2160 [math.NT], 2008.
- Marc Deléglise and Jean-Louis Nicolas, On the Largest Product of Primes with Bounded Sum, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.8.
- Marc Deléglise and Jean-Louis Nicolas, The Landau function and the Riemann hypothesis, Univ. Lyon (France, 2019).
- John D. Dixon and Daniel Panario, The Degree of the Splitting Field of a Random Polynomial over a Finite Field, The Electronic Journal of Combinatorics 11:1 (2004).
- FindStat - Combinatorial Statistic Finder, The order of a permutation
- Jon Grantham, The largest prime dividing the maximal order of an element of S_n, Math. Comput. 64, No. 209, 407-410 (1995).
- Joel K. Haack, The Mathematics of Steve Reich's Clapping Music,in Bridges: Mathematical Connections in Art, Music and Science: Conference Proceedings, 1998, Reza Sarhangi (ed.), 87-92.
- Jan Elmar Krauskopf, Andreas Rauh, and Andreas Hein, Discrete simulation of maypole braiding machines to create collision-free braiding programmes, Heliyon (2025), Art. No. e42917.
- J. Kuzmanovich and A. Pavlichenkov, Finite groups of matrices whose entries are integers, Amer. Math. Monthly, 109 (2002), 173-186.
- Jean-Pierre Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, (French) [Explicit upper bound on the maximum order of an element of the symmetric group] Ann. Fac. Sci. Toulouse Math. (5) 6 (1984), no. 3-4, 269--281 (1985). MR0799599 (87a:11093).
- Jean-Pierre Massias, Jean-Louis Nicolas, and Guy Robin, Effective bounds for the maximal order of an element in the symmetric group, Math. Comp. 53 (1989), no. 188, 665--678. MR0979940 (90e:11139).
- W. Miller, The Maximum Order of an Element of Finite Symmetric Group, Am. Math. Monthly, Jun-Jul 1987, pp. 497-506.
- Jean-Louis Nicolas, Sur l'ordre maximum d'un élément dans le groupe Sn des permutations, Acta Arith. 14, 315-332 (1968).
- Jean-Louis Nicolas, Ordre maximal d'un élément du groupe S_n des permutations et 'highly composite numbers', Bull. Soc. Math. France 97 (1969), 129-191.
- Jean-Louis Nicolas, Calcul de l'ordre maximum d'un élément du groupe symétrique S_n Revue française d'informatique et de recherche opérationnelle, série rouge 3.2 (1969): 43-50.
- Jean-Louis Nicolas, Ordre maximal d'un e'le'ment du'un groupe de permutations, C. R. Acad. Sci. Paris, A, 270 (1970), 1-4. [Annotated scanned copy]
- Roger D. Nussbaum, Lunel Verduyn, and M. Sjoerd, Asymptotic estimates for the periods of periodic points of non-expansive maps, Ergodic Theory Dynam. Systems 23 (2003), no. 4, pp. 1199-1226. MR1997973 (2004m:37033).
- S. M. Shah, An inequality for the arithmetical function g(x) (scan of first page).
- A. Wechsler, Re: Question (A000793(A007504(n)) =? A002110(n)), SeqFan mailing list, Mar 29 2015.
- Eric Weisstein's World of Mathematics, Landau's Function
- Herbert S. Wilf, The asymptotics of e^P(z) and the number of elements of each order in S_n, Bull. Amer. Math. Soc., 15.2 (1986), 225-232.
- Index entries for sequences related to lcm's
- Index entries for "core" sequences
Crossrefs
Programs
-
Haskell
a000793 = maximum . map (foldl lcm 1) . partitions where partitions n = ps 1 n where ps x 0 = [[]] ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)] -- Reinhard Zumkeller, Mar 29 2015
-
Maple
A000793 := proc(n) l := 1: p := combinat[partition](n): for i from 1 to combinat[numbpart](n) do if ilcm( p[i][j] $ j=1..nops(p[i])) > l then l := ilcm( p[i][j] $ j=1..nops(p[i])) end if: end do: l ; end proc: seq(A000793(n),n=0..30) ; # James Sellers, Dec 07 2000 seq( max( op( map( x->ilcm(op(x)), combinat[partition](n)))), n=0..30); # David Radcliffe, Feb 28 2006 # third Maple program: b:= proc(n, i) option remember; local p; p:= `if`(i<1, 1, ithprime(i)); `if`(n=0 or i<1, 1, max(b(n, i-1), seq(p^j*b(n-p^j, i-1), j=1..ilog[p](n)))) end: a:=n->b(n, `if`(n<8, 3, numtheory[pi](ceil(1.328*isqrt(n*ilog(n)))))): seq(a(n), n=0..60); # Alois P. Heinz, Feb 16 2013
-
Mathematica
f[n_] := Max@ Apply[LCM, IntegerPartitions@ n, 1]; Array[f, 47] (* Robert G. Wilson v, Oct 23 2011 *) b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0 || i<1, 1, Max[b[n, i-1], Table[p^j*b[n-p^j, i-1], {j, 1, Log[p, n] // Floor}]]]]; a[n_] := b[n, If[n<8, 3, PrimePi[Ceiling[1.328*Sqrt[n*Log[n] // Floor]]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 07 2014, after Alois P. Heinz *)
-
PARI
{a(n) = my(m, t, j, u); if( n<2, n>=0, m = ceil(n / exp(1)); t = ceil( (n/m)^m ); j=1; for( i=2, t, u = factor(i); u = sum( k=1, matsize(u)[1], u[k,1]^u[k,2]); if( u<=n, j=i)); j)}; /* Michael Somos, Oct 20 2004 */
-
PARI
c=0;A793=apply(t->eval(concat(Vec(t)[#Str(c++) .. -1])),select(t->#t,readstr("/tmp/b000793.txt")));A000793(n)=A793[n+1] \\ Assumes the b-file in the /tmp (or C:\tmp) folder. - M. F. Hasler, Mar 29 2015
-
PARI
A008475(n)=my(f=factor(n)); sum(i=1,#f~,f[i,1]^f[i,2]); a(n)= { if(n<2, return(1)); forstep(i=ceil(exp(1.05315*sqrt(log(n)*n))), 2, -1, if(A008475(i)<=n, return(i)) ); 1; } \\ Charles R Greathouse IV, Apr 28 2015
-
PARI
{ \\ translated from code given by Tomas Rokicki my( N = 100 ); my( V = vector(N,j,1) ); forprime (i=2, N, \\ primes i forstep (j=N, i, -1, my( hi = V[j] ); my( pp = i ); \\ powers of prime i while ( pp<=j, \\ V[] is 1-based hi = max(if(j==pp, pp, V[j-pp]*pp), hi); pp *= i; ); V[j] = hi; ); ); print( V ); \\ all values \\ print( V[N] ); \\ just a(N) \\ print("0 1"); for (n=1, N, print(n, " ", V[n]) ); \\ b-file } \\ Joerg Arndt, Nov 14 2016
-
PARI
{a(n) = my(m=1); if( n<0, 0, forpart(v=n, m = max(m, lcm(Vec(v)))); m)}; /* Michael Somos, Sep 04 2017 */
-
Python
from sympy import primerange def aupton(N): # compute terms a(0)..a(N) V = [1 for j in range(N+1)] for i in primerange(2, N+1): for j in range(N, i-1, -1): hi = V[j] pp = i while pp <= j: hi = max((pp if j==pp else V[j-pp]*pp), hi) pp *= i V[j] = hi return V print(aupton(47)) # Michael S. Branicky, Oct 09 2022 after Joerg Arndt
-
Python
from sympy import primerange,sqrt,log,Rational def f(N): # compute terms a(0)..a(N) V = [1 for j in range(N+1)] if N < 4: C = 2 else: C = Rational(166,125) for i in primerange(C*sqrt(N*log(N))): for j in range(N, i-1, -1): hi = V[j] pp = i while pp <= j: hi = max(V[j-pp]*pp, hi) pp *= i V[j] = hi return V # Philip Turecek, Mar 31 2023
-
Sage
def a(n): return max([lcm(l) for l in Partitions(n)]) # Philip Turecek, Mar 28 2023
-
Scheme
;; A naive algorithm searching through all partitions of n: (define (A000793 n) (let ((maxlcm (list 0))) (fold_over_partitions_of n 1 lcm (lambda (p) (set-car! maxlcm (max (car maxlcm) p)))) (car maxlcm))) (define (fold_over_partitions_of m initval addpartfun colfun) (let recurse ((m m) (b m) (n 0) (partition initval)) (cond ((zero? m) (colfun partition)) (else (let loop ((i 1)) (recurse (- m i) i (+ 1 n) (addpartfun i partition)) (if (< i (min b m)) (loop (+ 1 i)))))))) ;; From Antti Karttunen, May 17 2013.
Formula
Landau: lim_{n->oo} (log a(n)) / sqrt(n log n) = 1.
For bounds, see the Shah and Massias references.
For n >= 2, a(n) = max_{k} A008475(k) <= n. - Joerg Arndt, Nov 13 2016
Extensions
More terms from David W. Wilson
Removed erroneous comment about a(16) which probably originated from misreading a(15)=105 as a(16) because of offset=0: a(16) = 4*5*7 = 140 is correct as it stands. - M. F. Hasler, Feb 02 2009
Comments