cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A080510 Triangle read by rows: T(n,k) gives the number of set partitions of {1,...,n} with maximum block length k.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 90, 30, 6, 1, 1, 231, 420, 175, 42, 7, 1, 1, 763, 2016, 1015, 280, 56, 8, 1, 1, 2619, 10024, 6111, 1890, 420, 72, 9, 1, 1, 9495, 51640, 38010, 12978, 3150, 600, 90, 10, 1, 1, 35695, 276980, 244035, 91938, 24024, 4950, 825, 110, 11, 1
Offset: 1

Views

Author

Wouter Meeussen, Mar 22 2003

Keywords

Comments

Row sums are A000110 (Bell numbers). Second column is A001189 (Degree n permutations of order exactly 2).
From Peter Luschny, Mar 09 2009: (Start)
Partition product of Product_{j=0..n-1} ((k + 1)*j - 1) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A036040.
Same partition product with length statistic is A008277.
Diagonal a(A000217) = A000012.
Row sum is A000110. (End)
From Gary W. Adamson, Feb 24 2011: (Start)
Construct an array in which the n-th row is the partition function G(n,k), where G(n,1),...,G(n,6) = A000012, A000085, A001680, A001681, A110038, A148092, with the first few rows
1, 1, 1, 1, 1, 1, 1, ... = A000012
1, 2, 4, 10, 26, 76, 232, ... = A000085
1, 2, 5, 14, 46, 166, 652, ... = A001680
1, 2, 5, 15, 51, 196, 827, ... = A001681
1, 2 5 15 52 202 869, ... = A110038
1, 2, 5 15 52 203 876, ... = A148092
...
Rows tend to A000110, the Bell numbers. Taking finite differences from the top, then reorienting, we obtain triangle A080510.
The n-th row of the array is the eigensequence of an infinite lower triangular matrix with n diagonals of Pascal's triangle starting from the right and the rest zeros. (End)

Examples

			T(4,3) = 4 since there are 4 set partitions with longest block of length 3: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}} and {{1,2,4},{3}}.
Triangle begins:
  1;
  1,    1;
  1,    3,     1;
  1,    9,     4,    1;
  1,   25,    20,    5,    1;
  1,   75,    90,   30,    6,   1;
  1,  231,   420,  175,   42,   7,  1;
  1,  763,  2016, 1015,  280,  56,  8,  1;
  1, 2619, 10024, 6111, 1890, 420, 72,  9,  1;
  ...
		

Crossrefs

Columns k=1..10 give: A000012 (for n>0), A001189, A229245, A229246, A229247, A229248, A229249, A229250, A229251, A229252. - Alois P. Heinz, Sep 17 2013
T(2n,n) gives A276961.
Take differences along rows of A229223. - N. J. A. Sloane, Jan 10 2018

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    T:= (n, k)-> b(n, k) -b(n, k-1):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Apr 20 2012
  • Mathematica
    << DiscreteMath`NewCombinatorica`; Table[Length/@Split[Sort[Max[Length/@# ]&/@SetPartitions[n]]], {n, 12}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; T[n_, k_] := b[n, k]-b[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)

Formula

E.g.f. for k-th column: exp(exp(x)*GAMMA(k, x)/(k-1)!-1)*(exp(x^k/k!)-1). - Vladeta Jovovic, Feb 04 2005
From Peter Luschny, Mar 09 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*...*a_n!),
f^a = (f_1/1!)^a_1*...*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-1) = (-1)^n. (End)
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = C(2n,n)*(A000110(n)-1/2) for n>0.
T(n,m) = C(n,m)*A000110(n-m) for 2m > n > 0. (End)

A001680 The partition function G(n,3).

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 166, 652, 2780, 12644, 61136, 312676, 1680592, 9467680, 55704104, 341185496, 2170853456, 14314313872, 97620050080, 687418278544, 4989946902176, 37286121988256, 286432845428192, 2259405263572480, 18280749571449664, 151561941235370176
Offset: 0

Views

Author

Keywords

Comments

Number of '12-3 and 21-3'-avoiding permutations.
Set partitions into sets of size at most 3. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A229223.

Programs

  • Maple
    G:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 3):
    seq(a(n), n=0..30); # Alois P. Heinz, Apr 20 2012
    # Recurrence:
    rec := {(-n^2-3*n-2)*f(n)+(-2*n-4)*f(n+1)-2*f(n+2)+2*f(n+3)=0,f(0)=1,f(1)=1,f(2)=2}:
    aList := gfun:-rectoproc(rec,f(n),list): aList(25); # Peter Luschny, Feb 26 2018
  • Mathematica
    Table[Sum[n!/(m!2^(n+j-2m)3^(m-j))Binomial[m,j]Binomial[j,n+2j-3m],{m,0,n},{j,0,3m-n}],{n,0,15}]

Formula

E.g.f.: exp ( x + x^2 / 2 + x^3 / 6 ).
a(n) = n! * sum(k=1..n, 1/k! * sum(j=0..k, C(k,j) * C(j,n-3*k+2*j) * 2^(-n+2*k-j) * 3^(j-k))). [Vladimir Kruchinin, Jan 25 2011]
a(n) = G(n,3) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012
D-finite with recurrence 2*a(n) -2*a(n-1) +2*(-n+1)*a(n-2) -(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jan 25 2013
Proof of foregoing recurrence: The partition containing n can be a singleton (a(n-1) partitions of the remaining terms), a doubleton ((n-1) choices for its companion times a(n-2) partitions of the remaining terms) or a tripleton ((n-1) choose 2 choices for its companions times a(n-3) partitions for the remaining terms), so a(n) = a(n-1) + (n-1)a(n-2) + (n-1)*(n-2)/2 * a(n-3). - Micah E. Fogel, Feb 14 2013
a(n) ~ n^(2*n/3)*exp(1/2*(2*n)^(2/3)+2/3*(2*n)^(1/3)-2*n/3-4/9)/(sqrt(3)*2^(n/3)). - Vaclav Kotesovec, May 29 2013

Extensions

More terms added May 13 2009

A001681 The partition function G(n,4).

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 196, 827, 3795, 18755, 99146, 556711, 3305017, 20655285, 135399720, 927973061, 6631556521, 49294051497, 380306658250, 3039453750685, 25120541332271, 214363100120051, 1885987611214092, 17085579637664715, 159185637725413675
Offset: 0

Views

Author

Keywords

Comments

Number of '12-3 and 321-4'-avoiding permutations.
Set partitions into sets of size at most 4. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A229223.

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 4):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 20 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
    # Recurrence:
    rec := {(-n^3-6*n^2-11*n-6)*f(n) + (-3*n^2-15*n-18)*f(n+1) + (-6*n-18)*f(n+2) - 6*f(n+3) + 6*f(n+4)=0, f(0)=1, f(1)=1, f(2)=2, f(3)=5}:
    aList := gfun:-rectoproc(rec, f(n), list): aList(24); # Peter Luschny, Feb 26 2018
  • Mathematica
    g[n_, k_] := g[n, k] = If[n == 0, 1, If[k<1, 0, Sum[g[n-k*j, k-1]*n!/k!^j/(n-k*j)!/j!, {j, 0, n/k}]]]; Table[g[n, 4], {n, 0, 24}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
  • PARI
    A001681(n)=n!*sum(k=1,n, 1/k!*sum(j=0,k, binomial(k,j)*sum(i=j,n-k+j, binomial(j,i-j)*binomial(k-j,n-3*k+3*j-i)*2^(5*k-4*j+i-2*n)*3^(j-k))));
    vector(33,n,A001681(n-1)) /* Joerg Arndt, Jan 25 2011 */
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(sum(j=1,4,x^j/j!)))) \\ Joerg Arndt, Mar 11 2014

Formula

E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 ). - Ralf Stephan, Apr 22 2004
a(n) = n! * sum(k=1..n, 1/k! * sum(j=0..k, C(k,j) * sum(i=j..n-k+j, C(j,i-j) * C(k-j,n-3*k+3*j-i) * 2^(5*k-4*j+i-2*n) * 3^(j-k)))). [Vladimir Kruchinin, Jan 25 2011]
a(n) = G(n,4) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012
Recurrence: 6*a(n) = 6*a(n-1) + 6*(n-1)*a(n-2) + 3*(n-2)*(n-1)*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 15 2013
a(n) ~ n^(3*n/4)*exp(31*(6*n)^(1/4)/64 + 5*sqrt(6*n)/16 + (6*n)^(3/4)/6 - 3*n/4 - 21/32)/(2*6^(n/4)) * (1 + 1599*6^(3/4)/(40960*n^(1/4)) + 280873603/1677721600*sqrt(6/n) + 33870741297579 /240518168576000 *6^(1/4)/n^(3/4)). - Vaclav Kotesovec, Sep 15 2013

Extensions

More terms from Ralf Stephan, Apr 22 2004

A110038 The partition function G(n,5).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 202, 869, 4075, 20645, 112124, 648649, 3976633, 25719630, 174839120, 1245131903, 9263053753, 71806323461, 578719497070, 4839515883625, 41916097982471, 375401824277096, 3471395994487422, 33099042344383885, 325005134436155395
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Set partitions into sets of size at most 5. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]

Crossrefs

The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.
Column k=5 of A229223.
Cf. A276925.

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 5):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 20 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [1, 1, 2, 5, 15][n+1],
          a(n-1)+(n-1)*(a(n-2)+(n-2)/2*(a(n-3)+(n-3)/3*(a(n-4)
          +(n-4)/4*a(n-5)))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 5]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 ).
a(n) = n! * sum(k=1..n, 1/k! * sum(r=0..k, C(k,r) * sum(m=0..r, 2^(m-r) * C(r,m) * sum(j=0..m, C(m,j) * C(j,n-m-k-j-r) * 6^(j-m) * 24^(n-r-m-k-2*j) * 120^(m+k+j+r-n))))). - Vladimir Kruchinin, Jan 25 2011
a(n) = G(n,5) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012

A148092 The partition function G(n,6).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4131, 21065, 115274, 672673, 4163743, 27216840, 187160429, 1349511178, 10173555345, 79982663997, 654277037674, 5557624876513, 48931106059451, 445790174654588, 4196351007814659, 40757862664061104, 407944375184911787
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Comments

Set partitions into sets of size at most 6. The e.g.f. for partitions into sets of size at most s is exp( sum(j=1..s, x^j/j!) ). [Joerg Arndt, Dec 07 2012]

Crossrefs

The sequences G(n,1), G(n,2), G(n,3), G(n,4), G(n,5), G(n,6) are given by A000012, A000085, A001680, A001681, A110038, A148092 respectively.
Column k=6 of A229223.
Cf. A276926.

Programs

  • Maple
    G:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(G(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
        end:
    a:= n-> G(n, 6):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 20 2012
    # second Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 1, 2, 5, 15, 52][n+1],
          a(n-1)+(n-1)*(a(n-2) +(n-2)/2*(a(n-3) +(n-3)/3*(a(n-4)
                +(n-4)/4*(a(n-5) +(n-5)/5*a(n-6))))))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2013
  • Mathematica
    G[n_, i_] := G[n, i] = If[n == 0, 1, If[i<1, 0, Sum[G[n-i*j, i-1] *n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; a[n_] := G[n, 6]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)

Formula

E.g.f.: exp( x + x^2/2 + x^3/6 + x^4/24 + x^5/120 + x^6/720 ).
a(n) = G(n,6) with G(0,i) = 1, G(n,i) = 0 for n>0 and i<1, otherwise G(n,i) = Sum_{j=0..floor(n/i)} G(n-i*j,i-1) * n!/(i!^j*(n-i*j)!*j!). - Alois P. Heinz, Apr 20 2012

A229243 Number A(n,k) of set partitions of {1,...,k*n} into sets of size at most n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 10, 5, 1, 1, 1, 76, 166, 15, 1, 1, 1, 764, 12644, 3795, 52, 1, 1, 1, 9496, 1680592, 3305017, 112124, 203, 1, 1, 1, 140152, 341185496, 6631556521, 1245131903, 4163743, 877, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,      1,          1,              1,                   1, ...
  1,  1,      1,          1,              1,                   1, ...
  1,  2,     10,         76,            764,                9496, ...
  1,  5,    166,      12644,        1680592,           341185496, ...
  1, 15,   3795,    3305017,     6631556521,      25120541332271, ...
  1, 52, 112124, 1245131903, 41916097982471, 3282701194678476257, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000110, A229228, A229413.
Rows n=0+1, 2-3 give: A000012, A066223, A229414.
Main diagonal gives: A229229.
Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    A:= (n, k)-> G(n*k, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n-k, k]; For[j = k-1, j >= 1, j--, g = g*(n-j)/j + G[n-j, k] ]; g ] ]; A[n_, k_] := G[n*k, n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)

Formula

A(n,k) = (n*k)! * [x^(n*k)] exp(Sum_{j=1..n} x^j/j!).
A(n,k) = A229223(n*k,n).

A293051 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{i=0..k} x^i/i! - exp(x)).

Original entry on oeis.org

1, 1, -1, 1, 0, 0, 1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 0, 0, -1, 2, -2, 1, 0, 0, 0, -1, 9, -9, 1, 0, 0, 0, -1, -1, 9, -9, 1, 0, 0, 0, 0, -1, 9, -50, 50, 1, 0, 0, 0, 0, -1, -1, 34, -267, 267, 1, 0, 0, 0, 0, 0, -1, -1, 90, -413, 413, 1, 0, 0, 0, 0, 0, -1, -1, 34, -71
Offset: 0

Views

Author

Seiichi Manyama, Sep 29 2017

Keywords

Examples

			Square array begins:
    1,  1,  1,  1,  1, ...
   -1,  0,  0,  0,  0, ...
    0, -1,  0,  0,  0, ...
    1, -1, -1,  0,  0, ...
    1,  2, -1, -1,  0, ...
   -2,  9, -1, -1, -1, ...
		

Crossrefs

Columns k=0..4 give A000587, A293037, A293038, A293039, A293040.
Rows n=0..1 give A000012, (-1)*A000007.
Main diagonal gives A000007.

Formula

E.g.f. of column k: Product_{i>k} exp(-x^i/i!).
A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = - Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k.

A066223 Bisection of A000085.

Original entry on oeis.org

1, 2, 10, 76, 764, 9496, 140152, 2390480, 46206736, 997313824, 23758664096, 618884638912, 17492190577600, 532985208200576, 17411277367391104, 606917269909048576, 22481059424730751232, 881687990282453393920, 36494410645223834692096, 1589659519990672490875904
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

Comments

Number of tableaux on 2n elements. - Roberto E. Martinez II, Jan 09 2002
a(n) = number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more arcs such that at most one arc leaves each point. For example, with arcs separated by dashes, a(2)=10 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 13-24, 14-23. - David Callan, Sep 18 2007
a(n) = A229223(2n,2) = A229243(2,n). - Alois P. Heinz, Sep 17 2013

References

  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.

Crossrefs

Cf. A066224.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (4*n-2)*a(n-1)-2*(n-1)*(2*n-3)*a(n-2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 17 2013
  • Mathematica
    NumberOfTableaux[2n]
    a[n_] := a[n] = If[n<2, n+1, (4*n-2)*a[n-1] - 2*(n-1)*(2*n-3)*a[n-2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
    Table[(-2)^n HypergeometricU[-n, 1/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
  • PARI
    a(n)=sum(k=0,n,binomial(2*n,2*k)*prod(i=1,k,2*i-1))
    
  • PARI
    a(n)=if(n<0, 0, n*=2; n!*polcoeff(exp(x+x^2/2+x*O(x^n)),n))

Formula

a(n) = sum(k=0, n, C(2n, 2*k)*(2k-1)!!). - Benoit Cloitre, May 01 2003
a(n) = n!*2^n*LaguerreL(n, -1/2, -1/2). - Vladeta Jovovic, May 10 2003
E.g.f.: cosh(x)*exp(x^2/2) (with interpolated zeros) - Paul Barry, May 26 2003
E.g.f.: exp(x/(1-2*x))/sqrt(1-2*x). - Paul Barry, Apr 12 2010
a(n) = (1/sqrt(2*pi))*Int((1+x)^(2*n)*exp(-x^2/2),x,-infinity,infinity). - Paul Barry, Apr 21 2010
Conjecture: a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
Remark: the above conjectured recurrence is true and can be obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ n^n*2^(n-1/2)*exp(-n+sqrt(2*n)-1/4) * (1 + 7/(24*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013

Extensions

More terms from Roberto E. Martinez II, Jan 09 2002

A229224 The partition function G(n,7).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4139, 21137, 115874, 677623, 4204927, 27565188, 190168577, 1376119903, 10414950785, 82230347149, 675762947626, 5768465148493, 51054457464731, 467728049807348, 4428770289719931, 43281554035140829, 436015324638219779
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,7) of set partitions of {1,...,n} into sets of size at most 7.

Crossrefs

Column k=7 of A229223.
Cf. A276927.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 7):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 7)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 7}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..7} x^j/j!).

A229225 The partition function G(n,8).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115964, 678448, 4212352, 27632112, 190778186, 1381763398, 10468226150, 82744297014, 680835331228, 5819712427654, 51584619782546, 473344099095848, 4489677962922186, 43957668431564086, 443694809361207824
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2013

Keywords

Comments

Number G(n,8) of set partitions of {1,...,n} into sets of size at most 8.

Crossrefs

Column k=8 of A229223.
Cf. A276928.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n, 8):
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
           a(n-i)*binomial(n-1, i-1), i=1..min(n, 8)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2016
  • Mathematica
    CoefficientList[Exp[Sum[x^j/j!, {j, 1, 8}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)

Formula

E.g.f.: exp(Sum_{j=1..8} x^j/j!).
Showing 1-10 of 19 results. Next