Original entry on oeis.org
1, 2, 10, 76, 764, 9496, 140152, 2390480, 46206736, 997313824, 23758664096, 618884638912, 17492190577600, 532985208200576, 17411277367391104, 606917269909048576, 22481059424730751232, 881687990282453393920, 36494410645223834692096, 1589659519990672490875904
Offset: 0
- S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras
- I. Dolinka, J. East and R. D. Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279 [math.GR], 2015.
- Michael Torpey, Semigroup congruences: computational techniques and theoretical applications, Ph.D. Thesis, University of St. Andrews (Scotland, 2019).
-
a:= proc(n) option remember; `if`(n<2, n+1,
(4*n-2)*a(n-1)-2*(n-1)*(2*n-3)*a(n-2))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 17 2013
-
NumberOfTableaux[2n]
a[n_] := a[n] = If[n<2, n+1, (4*n-2)*a[n-1] - 2*(n-1)*(2*n-3)*a[n-2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
Table[(-2)^n HypergeometricU[-n, 1/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
-
a(n)=sum(k=0,n,binomial(2*n,2*k)*prod(i=1,k,2*i-1))
-
a(n)=if(n<0, 0, n*=2; n!*polcoeff(exp(x+x^2/2+x*O(x^n)),n))
A229228
Number of set partitions of {1,...,2n} into sets of size at most n.
Original entry on oeis.org
1, 1, 10, 166, 3795, 112124, 4163743, 190168577, 10468226150, 681863474058, 51720008131148, 4506628734688128, 445956917001833090, 49631199898024188422, 6160538225093750695800, 846748983034696433927334, 128064669166890886264698699, 21195039362681903376709497444
Offset: 0
a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(2*n, n):
seq(a(n), n=0..20);
-
G[n_, k_] := G[n, k] = If[n == 0, 1, If[k < 1, 0, Sum[G[n - k*j, k - 1]*n!/ k!^j/(n - k*j)!/j!, {j, 0, n/k}]]];
Table[G[2n, n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
A229229
Number of set partitions of {1,...,n^2} into sets of size at most n.
Original entry on oeis.org
1, 1, 10, 12644, 6631556521, 3282701194678476257, 3025262978042089315465899013351, 9292286146024114784457467780130028866860171013, 158655194198118596873150397161518177395553186289541468458000908304
Offset: 0
a(2) = 10: 1/2/3/4, 12/3/4, 13/2/4, 14/2/3, 1/23/4, 1/24/3, 1/2/34, 12/34, 13/24, 14/23.
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(n^2, n):
seq(a(n), n=0..10);
-
G[n_, k_] := G[n, k] = Module[{j, pc}, Which[k>n, G[n, n], n==0, 1, k<1, 0, True, pc = G[n-k, k]; For[j = k-1, j >= 1, j--, pc = pc*(n-j)/j + G[n-j, k]]; pc]]; a[n_] := G[n^2, n]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
A229413
Number of set partitions of {1,...,3n} into sets of size at most n.
Original entry on oeis.org
1, 1, 76, 12644, 3305017, 1245131903, 654277037674, 467728049807348, 443694809361207824, 544852927413901502514, 846359710104516310431744, 1629392161877794034658847500, 3819592516111353522143561652540, 10738740219595085951726635839975852
Offset: 0
-
G:= proc(n, k) option remember; local j; if k>n then G(n, n)
elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
end:
a:= n-> G(3*n, n):
seq(a(n), n=0..20);
-
G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
a[n_] := G[3n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
A229414
Number of set partitions of {1,...,3n} into sets of size at most 3.
Original entry on oeis.org
1, 5, 166, 12644, 1680592, 341185496, 97620050080, 37286121988256, 18280749571449664, 11168256342434121152, 8306264068494786829696, 7380771881944947770497280, 7715405978050522488223499776, 9365880670184268387214967727104, 13058232187415887547449498864463872
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, [1, 5, 166][n+1],
((108*n^2-72*n+4)*a(n-1)-6*(n-1)*(3*n-5)*(27*n^2-48*n+10)*a(n-2)
+9*(n-1)*(n-2)*(3*n-1)*(3*n-7)*(3*n-5)*(3*n-8)*a(n-3))/8)
end:
seq(a(n), n=0..20);
-
G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n - k, k]; For[j = k - 1, j >= 1, j--, g = g(n-j)/j + G[n - j, k]]; g]];
a[n_] := G[3n, 3];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz in A229243 *)
Showing 1-5 of 5 results.
Comments