cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A229243 Number A(n,k) of set partitions of {1,...,k*n} into sets of size at most n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 10, 5, 1, 1, 1, 76, 166, 15, 1, 1, 1, 764, 12644, 3795, 52, 1, 1, 1, 9496, 1680592, 3305017, 112124, 203, 1, 1, 1, 140152, 341185496, 6631556521, 1245131903, 4163743, 877, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2013

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,      1,          1,              1,                   1, ...
  1,  1,      1,          1,              1,                   1, ...
  1,  2,     10,         76,            764,                9496, ...
  1,  5,    166,      12644,        1680592,           341185496, ...
  1, 15,   3795,    3305017,     6631556521,      25120541332271, ...
  1, 52, 112124, 1245131903, 41916097982471, 3282701194678476257, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000110, A229228, A229413.
Rows n=0+1, 2-3 give: A000012, A066223, A229414.
Main diagonal gives: A229229.
Cf. A229223.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    A:= (n, k)-> G(n*k, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    G[n_, k_] := G[n, k] = Module[{j, g}, Which[k > n, G[n, n], n == 0, 1, k < 1, 0, True, g = G[n-k, k]; For[j = k-1, j >= 1, j--, g = g*(n-j)/j + G[n-j, k] ]; g ] ]; A[n_, k_] := G[n*k, n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 23 2013, translated from Maple *)

Formula

A(n,k) = (n*k)! * [x^(n*k)] exp(Sum_{j=1..n} x^j/j!).
A(n,k) = A229223(n*k,n).
Showing 1-1 of 1 results.