A124508 a(n) = 2^BigO(n) * 3^omega(n), where BigO = A001222 and omega = A001221, the numbers of prime factors of n with and without repetitions.
1, 6, 6, 12, 6, 36, 6, 24, 12, 36, 6, 72, 6, 36, 36, 48, 6, 72, 6, 72, 36, 36, 6, 144, 12, 36, 24, 72, 6, 216, 6, 96, 36, 36, 36, 144, 6, 36, 36, 144, 6, 216, 6, 72, 72, 36, 6, 288, 12, 72, 36, 72, 6, 144, 36, 144, 36, 36, 6, 432, 6, 36, 72, 192, 36, 216, 6, 72, 36, 216, 6, 288, 6
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Factorization.
- Eric Weisstein's World of Mathematics, Smooth number.
Crossrefs
Programs
-
Mathematica
Table[2^PrimeOmega[n] 3^PrimeNu[n],{n,80}] (* Harvey P. Dale, Mar 26 2013 *)
-
PARI
a(n) = my(f = factor(n)); 2^bigomega(f) * 3^omega(f); \\ Amiram Eldar, Jul 11 2023
Formula
Multiplicative with p^e -> 3*2^e, p prime and e>0.
For primes p, q with p <> q: a(p) = 6; a(p*q) = 36; a(p^k) = 3*2^k, k>0.
For squarefree numbers m: a(m) = 6^omega(m).