A124526 Triangle, read by rows, where T(n,k) = A049020([n/2],k)*A049020([(n+1)/2],k).
1, 1, 1, 1, 2, 3, 4, 9, 1, 10, 30, 6, 25, 100, 36, 1, 75, 370, 186, 10, 225, 1369, 961, 100, 1, 780, 5587, 4960, 750, 15, 2704, 22801, 25600, 5625, 225, 1, 10556, 101774, 136960, 39000, 2325, 21, 41209, 454276, 732736, 270400, 24025, 441, 1, 178031, 2199262, 4110512, 1849120, 217000, 6027, 28, 769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1, 3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 2, 3; 4, 9, 1; 10, 30, 6; 25, 100, 36, 1; 75, 370, 186, 10; 225, 1369, 961, 100, 1; 780, 5587, 4960, 750, 15; 2704, 22801, 25600, 5625, 225, 1; 10556, 101774, 136960, 39000, 2325, 21; 41209, 454276, 732736, 270400, 24025, 441, 1; 178031, 2199262, 4110512, 1849120, 217000, 6027, 28; 769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1; 3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36; ...
Programs
-
Mathematica
S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}]; T[n_, k_] := S[Floor[n/2], k] S[Floor[(n+1)/2], k]; Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Nov 02 2020 *)
-
PARI
{T(n,k) = (n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k)} for(n=0,15, for(k=0,n\2, print1(T(n,k),", "));print(""))
Comments