Original entry on oeis.org
1, 1, 2, 5, 14, 46, 162, 641, 2656, 12092, 56956, 290636, 1523088, 8559980, 49163792, 300514337, 1870652672, 12318376190, 82394305842, 580168452664, 4141242464512, 30992978322024, 234765130286990, 1858132080028884
Offset: 0
-
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1) +(k+1)*(b(n-1, k) +b(n-1, k+1))))
end:
a:= n-> add(b(iquo(n, 2), k)*b(iquo(n+1, 2), k), k=0..n/2):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 14 2014
-
b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, b[n - 1, k - 1] + (k + 1) (b[n - 1, k] + b[n - 1, k + 1])]];
a[n_] := Sum[b[Quotient[n, 2], k] b[Quotient[n + 1, 2], k], {k, 0, n/2}];
a /@ Range[0, 30]
(* Second program: *)
S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}];
T[n_, k_] := S[Floor[n/2], k] S[Floor[(n + 1)/2], k];
a[n_] := Sum[T[n, k], {k, 0, Floor[n/2]}];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 02 2020, first program after Alois P. Heinz *)
-
{a(n)=sum(k=0,n\2,(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))}
A124528
a(n) = Sum_{k=0..n} 2^k*A124526(n,k) for n>=0.
Original entry on oeis.org
1, 1, 3, 8, 26, 94, 377, 1639, 7623, 38034, 199338, 1111816, 6442481, 39478219, 249507483, 1659172454, 11321526022, 80944313164, 591617080305, 4514822914133, 35120998653271, 284407875530728, 2342407874087454
Offset: 0
-
{a(n)=sum(k=0,n\2,2^k*(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))}
A124529
a(n) = Sum_{k=0..n} k!*A124526(n+k,k) for n>=0.
Original entry on oeis.org
1, 2, 6, 29, 190, 1562, 15457, 179034, 2377092, 35599701, 593731310, 10914169312, 219252994039, 4779086510108, 112341582757512, 2833025331800643, 76293601822430388, 2185288262904326236, 66338823231846583471
Offset: 0
-
{a(n)=sum(k=0,n,k!*((n+k)\2)!*((n+k+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k)\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k+1)\2),k))}
A124418
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having exactly k blocks that contain both odd and even entries (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 9, 2, 10, 30, 12, 25, 100, 72, 6, 75, 370, 372, 60, 225, 1369, 1922, 600, 24, 780, 5587, 9920, 4500, 360, 2704, 22801, 51200, 33750, 5400, 120, 10556, 101774, 273920, 234000, 55800, 2520, 41209, 454276, 1465472, 1622400, 576600, 52920, 720
Offset: 0
T(4,1) = 9 because we have 1234, 134|2, 1|234, 124|3, 14|2|3, 1|2|34, 123|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
1;
1, 1;
2, 3;
4, 9, 2;
10, 30, 12;
25, 100, 72, 6;
...
-
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({t=1,s=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],x,j),j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
with(combinat):
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(binomial(g, i)*stirling2(i, k)*bell(g-i), i=k..g)*
add(binomial(u, i)*stirling2(i, k)*bell(u-i), i=k..u)*k!
end:
seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
-
T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]}, Sum[Binomial[g, i] * StirlingS2[i, k]*BellB[g-i], {i, k, g}]*Sum[Binomial[u, i]*StirlingS2[i, k] * BellB[u-i], {i, k, u}]*k!]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
-
{T(n,k)=if(k<0||k>n,0, k!*(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))} \\ Paul D. Hanna, Nov 08 2006
Showing 1-4 of 4 results.
Comments