A124419
Number of partitions of the set {1,2,...n} having no blocks that contain both odd and even entries.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 25, 75, 225, 780, 2704, 10556, 41209, 178031, 769129, 3630780, 17139600, 87548580, 447195609, 2452523325, 13450200625, 78697155750, 460457244900, 2859220516290, 17754399678409, 116482516809889, 764214897046969, 5277304280371714
Offset: 0
a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- A. Dzhumadil’daev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
-
Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1,s=1,x=0},Q[n]),n=0..30);
# second Maple program:
with(combinat):
a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
A124421
Number of partitions of the set {1,2,...,n} having no blocks that contain only odd entries.
Original entry on oeis.org
1, 0, 1, 1, 5, 9, 52, 130, 855, 2707, 19921, 75771, 614866, 2717570, 24040451, 120652827, 1152972925, 6460552857, 66200911138, 408845736040, 4465023867757, 30083964854141, 348383154017581, 2539795748336375, 31052765897026352, 243282175672281360
Offset: 0
a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
Bisection gives
A108459 (even part).
-
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0,s=1,x=1},Q[n]),n=0..27);
# second Maple program:
a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)
A124420
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only odd entries (0<=k<=ceiling(n/2)).
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 3, 1, 5, 8, 2, 9, 26, 15, 2, 52, 101, 45, 5, 130, 385, 287, 70, 5, 855, 1889, 1143, 238, 15, 2707, 8295, 7320, 2475, 335, 15, 19921, 48382, 35805, 10540, 1275, 52, 75771, 240534, 240082, 100940, 19505, 1686, 52, 614866, 1609551, 1379753, 512710
Offset: 0
T(4,1) = 8 because we have 13|24, 1|234, 124|3, 14|2|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
0, 1;
1, 1;
1, 3, 1;
5, 8, 2;
9, 26, 15, 2;
52, 101, 45, 5;
-
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({s=1,x=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form
# second Maple program:
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(u, i)*
add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)
end:
seq(seq(T(n,k), k=0..ceil(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
-
T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]},
Sum[StirlingS2[i, k]*Binomial[u, i]*
Sum[StirlingS2[g, j]*If[u == i, 1, j^(u - i)], {j, 0, g}], {i, k, u}]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz, updated Jan 01 2021 *)
A124422
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only even entries (0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 5, 8, 2, 22, 25, 5, 52, 101, 45, 5, 283, 423, 156, 15, 855, 1889, 1143, 238, 15, 5451, 9726, 5002, 916, 52, 19921, 48382, 35805, 10540, 1275, 52, 144074, 292223, 187515, 49155, 5400, 203, 614866, 1609551, 1379753, 512710, 89425, 7089, 203
Offset: 0
T(4,1) = 8 because we have 134|2, 13|24, 14|2|3, 1|24|3, 1|2|34, 123|4, 1|23|4 and 12|3|4.
Triangle starts:
1;
1;
1, 1;
3, 2;
5, 8, 2;
22, 25, 5;
52, 101, 45, 5;
...
-
Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({t=1,x=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],s,j),j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
add(Stirling2(i, k)*binomial(g, i)*
add(Stirling2(u, j)*j^(g-i), j=0..u), i=k..g)
end:
seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
-
Unprotect[Power]; 0^0 = 1; T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]}, Sum[StirlingS2[i, k]*Binomial[g, i]*Sum[StirlingS2[u, j]*j^(g-i), {j, 0, u}], {i, k, g}]]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
A124423
Number of partitions of the set {1,2,...,n} having no blocks that contain only even entries.
Original entry on oeis.org
1, 1, 1, 3, 5, 22, 52, 283, 855, 5451, 19921, 144074, 614866, 4941987, 24040451, 211648665, 1152972925, 10998989896, 66200911138, 678600959525, 4465023867757, 48850849177703, 348383154017581, 4045835816532096, 31052765897026352, 381022649523561501
Offset: 0
a(4) = 5 because we have 1234, 14|23, 1|234, 124|3 and 12|34.
-
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=1,s=0,x=1},Q[n]),n=0..27);
# second Maple program:
a:= n-> add(Stirling2(ceil(n/2), j)*j^floor(n/2), j=0..ceil(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Oct 23 2013
-
a[0] = a[1] = 1; a[n_] := Sum[StirlingS2[Ceiling[n/2], j]*j^Floor[n/2], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
A124425
Number of partitions of the set {1,2,...,n} having no blocks with all entries of the same parity.
Original entry on oeis.org
1, 0, 1, 1, 3, 7, 25, 79, 339, 1351, 6721, 31831, 179643, 979567, 6166105, 37852039, 262308819, 1784037031, 13471274401, 100285059751, 818288740923, 6604485845167, 57836113793305, 502235849694679, 4693153430067699, 43572170967012871, 432360767273547841
Offset: 0
a(4) = 3 because we have 1234, 14|23 and 12|34.
-
Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: seq(subs({t=0,s=0,x=1},Q[n]),n=0..27);
# second Maple program:
a:= proc(n) local g, u; g:= floor(n/2); u:= ceil(n/2);
add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..g)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Oct 24 2013
-
a[n_] := Module[{g=Floor[n/2], u=Ceiling[n/2]}, Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, g}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
A124424
Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting of entries of the same parity (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 3, 4, 5, 2, 1, 7, 14, 16, 10, 4, 1, 25, 48, 61, 42, 20, 6, 1, 79, 194, 250, 200, 106, 38, 9, 1, 339, 820, 1145, 958, 569, 230, 66, 12, 1, 1351, 3794, 5554, 5096, 3251, 1486, 486, 112, 16, 1, 6721, 18960, 29101, 28010, 19110, 9470, 3477, 930, 175, 20, 1
Offset: 0
T(4,2) = 5 because we have 13|24, 14|2|3, 1|2|34, 1|23|4 and 12|3|4.
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 2, 1, 1;
3, 4, 5, 2, 1;
7, 14, 16, 10, 4, 1;
...
-
Q[0]:=1: for n from 1 to 11 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 11 do P[n]:=sort(subs({s=t,x=1},Q[n])) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(g, u) option remember;
add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..min(g, u))
end:
T:= proc(n, k) local g, u; g:= floor(n/2); u:= ceil(n/2);
add(add(add(binomial(g, i)*Stirling2(i, h)*binomial(u, j)*
Stirling2(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
end:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Oct 24 2013
-
b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}] ; T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[ Sum[ Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k-h]*b[g-i, u-j], {j, k-h, u}], {i, h, g}], {h, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
A124526
Triangle, read by rows, where T(n,k) = A049020([n/2],k)*A049020([(n+1)/2],k).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 9, 1, 10, 30, 6, 25, 100, 36, 1, 75, 370, 186, 10, 225, 1369, 961, 100, 1, 780, 5587, 4960, 750, 15, 2704, 22801, 25600, 5625, 225, 1, 10556, 101774, 136960, 39000, 2325, 21, 41209, 454276, 732736, 270400, 24025, 441, 1, 178031, 2199262, 4110512, 1849120, 217000, 6027, 28, 769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1, 3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36
Offset: 0
Triangle begins:
1;
1;
1, 1;
2, 3;
4, 9, 1;
10, 30, 6;
25, 100, 36, 1;
75, 370, 186, 10;
225, 1369, 961, 100, 1;
780, 5587, 4960, 750, 15;
2704, 22801, 25600, 5625, 225, 1;
10556, 101774, 136960, 39000, 2325, 21;
41209, 454276, 732736, 270400, 24025, 441, 1;
178031, 2199262, 4110512, 1849120, 217000, 6027, 28;
769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1;
3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36; ...
-
S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}];
T[n_, k_] := S[Floor[n/2], k] S[Floor[(n+1)/2], k];
Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Nov 02 2020 *)
-
{T(n,k) = (n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k)}
for(n=0,15, for(k=0,n\2, print1(T(n,k),", "));print(""))
A124529
a(n) = Sum_{k=0..n} k!*A124526(n+k,k) for n>=0.
Original entry on oeis.org
1, 2, 6, 29, 190, 1562, 15457, 179034, 2377092, 35599701, 593731310, 10914169312, 219252994039, 4779086510108, 112341582757512, 2833025331800643, 76293601822430388, 2185288262904326236, 66338823231846583471
Offset: 0
-
{a(n)=sum(k=0,n,k!*((n+k)\2)!*((n+k+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k)\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k+1)\2),k))}
A362495
Total number of blocks containing at least one odd element and at least one even element in all partitions of [n].
Original entry on oeis.org
0, 0, 1, 3, 13, 54, 262, 1294, 7109, 40367, 248651, 1587414, 10827740, 76494630, 571499993, 4414720825, 35798107309, 299547765240, 2616358573834, 23536296521084, 220030456297349, 2114721297588097, 21046291460160803, 214984439282684504, 2267305399918683232
Offset: 0
a(3) = 3 = 1 + 1 + 0 + 1 + 0 : 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, x, y, m) option remember; `if`(n=0, m,
`if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
`if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..25);
Showing 1-10 of 11 results.
Comments