cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A124419 Number of partitions of the set {1,2,...n} having no blocks that contain both odd and even entries.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 25, 75, 225, 780, 2704, 10556, 41209, 178031, 769129, 3630780, 17139600, 87548580, 447195609, 2452523325, 13450200625, 78697155750, 460457244900, 2859220516290, 17754399678409, 116482516809889, 764214897046969, 5277304280371714
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Examples

			a(4) = 4 because we have 13|24, 1|24|3, 13|2|4 and 1|2|3|4.
		

Crossrefs

Column k=0 of A124418 and of A363493.
Column k=2 of A275069.

Programs

  • Maple
    Q[0]:=1: for n from 1 to 30 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 30 do Q[n]:=Q[n] od: seq(subs({t=1,s=1,x=0},Q[n]),n=0..30);
    # second Maple program:
    with(combinat):
    a:= n-> bell(floor(n/2))*bell(ceil(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[n_] := BellB[Floor[n/2]]*BellB[Ceiling[n/2]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](1,1,0), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = A000110(floor(n/2)) * A000110(ceiling(n/2)). - Alois P. Heinz, Oct 23 2013
a(n) mod 2 = A088911(n). - Alois P. Heinz, Jun 06 2023

A124421 Number of partitions of the set {1,2,...,n} having no blocks that contain only odd entries.

Original entry on oeis.org

1, 0, 1, 1, 5, 9, 52, 130, 855, 2707, 19921, 75771, 614866, 2717570, 24040451, 120652827, 1152972925, 6460552857, 66200911138, 408845736040, 4465023867757, 30083964854141, 348383154017581, 2539795748336375, 31052765897026352, 243282175672281360
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Column 0 of A124420.

Examples

			a(4) = 5 because we have 1234, 134|2, 14|23, 12|34 and 123|4.
		

Crossrefs

Bisection gives A108459 (even part).

Programs

  • Maple
    Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=0,s=1,x=1},Q[n]),n=0..27);
    # second Maple program:
    a:= n-> add(Stirling2(floor(n/2), j)*j^ceil(n/2), j=0..floor(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[0] = 1; a[n_] := Sum[StirlingS2[Floor[n/2], j]*j^Ceiling[n/2], {j, 0, Floor[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 20 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](0,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..floor(n/2)} Stirling2(floor(n/2),j) * j^ceiling(n/2). - Alois P. Heinz, Oct 23 2013

A124420 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only odd entries (0<=k<=ceiling(n/2)).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 1, 5, 8, 2, 9, 26, 15, 2, 52, 101, 45, 5, 130, 385, 287, 70, 5, 855, 1889, 1143, 238, 15, 2707, 8295, 7320, 2475, 335, 15, 19921, 48382, 35805, 10540, 1275, 52, 75771, 240534, 240082, 100940, 19505, 1686, 52, 614866, 1609551, 1379753, 512710
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Row n has 1 + ceiling(n/2) terms. Row sums are the Bell numbers (A000110). T(2n,n) = T(2n+1,n+1) = A000110(n) (the Bell numbers). T(n,0) = A124421(n).

Examples

			T(4,1) = 8 because we have 13|24, 1|234, 124|3, 14|2|3, 1|2|34, 13|2|4, 1|23|4 and 12|3|4.
Triangle starts:
   1;
   0,   1;
   1,   1;
   1,   3,   1;
   5,   8,   2;
   9,  26,  15,   2;
  52, 101,  45,   5;
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({s=1,x=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..ceil(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
          add(Stirling2(i, k)*binomial(u, i)*
          add(Stirling2(g, j)*j^(u-i), j=0..g), i=k..u)
        end:
    seq(seq(T(n,k), k=0..ceil(n/2)), n=0..15);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]},
        Sum[StirlingS2[i, k]*Binomial[u, i]*
        Sum[StirlingS2[g, j]*If[u == i, 1, j^(u - i)], {j, 0, g}], {i, k, u}]];
    Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 20 2015, after Alois P. Heinz, updated Jan 01 2021 *)

Formula

The generating polynomial of row n is P[n](t)=Q[n](t,1,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.

A124422 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting only even entries (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 5, 8, 2, 22, 25, 5, 52, 101, 45, 5, 283, 423, 156, 15, 855, 1889, 1143, 238, 15, 5451, 9726, 5002, 916, 52, 19921, 48382, 35805, 10540, 1275, 52, 144074, 292223, 187515, 49155, 5400, 203, 614866, 1609551, 1379753, 512710, 89425, 7089, 203
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Row n has 1+floor(n/2) terms. Row sums are the Bell numbers (A000110). T(2n-1,n-1) = T(2n,n) = A000110(n) (the Bell numbers). T(n,0) = A124423(n).

Examples

			T(4,1) = 8 because we have 134|2, 13|24, 14|2|3, 1|24|3, 1|2|34, 123|4, 1|23|4 and 12|3|4.
Triangle starts:
   1;
   1;
   1,   1;
   3,   2;
   5,   8,  2;
  22,  25,  5;
  52, 101, 45, 5;
  ...
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 13 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 13 do P[n]:=sort(subs({t=1,x=1},Q[n])) od: for n from 0 to 13 do seq(coeff(P[n],s,j),j=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    T:= proc(n, k) local g, u; g:= floor(n/2); u:=ceil(n/2);
          add(Stirling2(i, k)*binomial(g, i)*
          add(Stirling2(u, j)*j^(g-i), j=0..u), i=k..g)
        end:
    seq(seq(T(n,k), k=0..floor(n/2)), n=0..15); # Alois P. Heinz, Oct 23 2013
  • Mathematica
    Unprotect[Power]; 0^0 = 1; T[n_, k_] := Module[{g = Floor[n/2], u = Ceiling[n/2]},  Sum[StirlingS2[i, k]*Binomial[g, i]*Sum[StirlingS2[u, j]*j^(g-i), {j, 0, u}], {i, k, g}]]; Table[Table[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

The generating polynomial of row n is P[n](s)=Q[n](1,s,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.

A124423 Number of partitions of the set {1,2,...,n} having no blocks that contain only even entries.

Original entry on oeis.org

1, 1, 1, 3, 5, 22, 52, 283, 855, 5451, 19921, 144074, 614866, 4941987, 24040451, 211648665, 1152972925, 10998989896, 66200911138, 678600959525, 4465023867757, 48850849177703, 348383154017581, 4045835816532096, 31052765897026352, 381022649523561501
Offset: 0

Views

Author

Emeric Deutsch, Oct 31 2006

Keywords

Comments

Column 0 of A124422.

Examples

			a(4) = 5 because we have 1234, 14|23, 1|234, 124|3 and 12|34.
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 27 do Q[n]:=Q[n] od: seq(subs({t=1,s=0,x=1},Q[n]),n=0..27);
    # second Maple program:
    a:= n-> add(Stirling2(ceil(n/2), j)*j^floor(n/2), j=0..ceil(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 23 2013
  • Mathematica
    a[0] = a[1] = 1; a[n_] := Sum[StirlingS2[Ceiling[n/2], j]*j^Floor[n/2], {j, 0, Ceiling[n/2]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](1,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{j=0..ceiling(n/2)} Stirling2(ceiling(n/2),j) * j^floor(n/2). - Alois P. Heinz, Oct 23 2013

A124425 Number of partitions of the set {1,2,...,n} having no blocks with all entries of the same parity.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 25, 79, 339, 1351, 6721, 31831, 179643, 979567, 6166105, 37852039, 262308819, 1784037031, 13471274401, 100285059751, 818288740923, 6604485845167, 57836113793305, 502235849694679, 4693153430067699, 43572170967012871, 432360767273547841
Offset: 0

Views

Author

Emeric Deutsch, Nov 01 2006

Keywords

Comments

Column 0 of A124424.

Examples

			a(4) = 3 because we have 1234, 14|23 and 12|34.
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 27 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: seq(subs({t=0,s=0,x=1},Q[n]),n=0..27);
    # second Maple program:
    a:= proc(n) local g, u; g:= floor(n/2); u:= ceil(n/2);
          add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..g)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    a[n_] := Module[{g=Floor[n/2], u=Ceiling[n/2]}, Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, g}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)

Formula

a(n) = Q[n](0,0,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k)*Stirling2(ceiling(n/2),k)*k!. - Alois P. Heinz, Oct 24 2013

A124424 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n}, having exactly k blocks consisting of entries of the same parity (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 3, 4, 5, 2, 1, 7, 14, 16, 10, 4, 1, 25, 48, 61, 42, 20, 6, 1, 79, 194, 250, 200, 106, 38, 9, 1, 339, 820, 1145, 958, 569, 230, 66, 12, 1, 1351, 3794, 5554, 5096, 3251, 1486, 486, 112, 16, 1, 6721, 18960, 29101, 28010, 19110, 9470, 3477, 930, 175, 20, 1
Offset: 0

Views

Author

Emeric Deutsch, Nov 01 2006

Keywords

Comments

Row sums are the Bell numbers (A000110). T(n,0)=A124425(n).

Examples

			T(4,2) = 5 because we have 13|24, 14|2|3, 1|2|34, 1|23|4 and 12|3|4.
Triangle starts:
  1;
  0,  1;
  1,  0,  1;
  1,  2,  1,  1;
  3,  4,  5,  2, 1;
  7, 14, 16, 10, 4, 1;
  ...
		

Crossrefs

Programs

  • Maple
    Q[0]:=1: for n from 1 to 11 do if n mod 2 = 1 then Q[n]:=expand(t*diff(Q[n-1],t)+x*diff(Q[n-1],s)+x*diff(Q[n-1],x)+t*Q[n-1]) else Q[n]:=expand(x*diff(Q[n-1],t)+s*diff(Q[n-1],s)+x*diff(Q[n-1],x)+s*Q[n-1]) fi od: for n from 0 to 11 do P[n]:=sort(subs({s=t,x=1},Q[n])) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(g, u) option remember;
          add(Stirling2(g, k)*Stirling2(u, k)*k!, k=0..min(g, u))
        end:
    T:= proc(n, k) local g, u; g:= floor(n/2); u:= ceil(n/2);
          add(add(add(binomial(g, i)*Stirling2(i, h)*binomial(u, j)*
          Stirling2(j, k-h)*b(g-i, u-j), j=k-h..u), i=h..g), h=0..k)
        end:
    seq(seq(T(n,k), k=0..n), n=0..12);  # Alois P. Heinz, Oct 24 2013
  • Mathematica
    b[g_, u_] := b[g, u] = Sum[StirlingS2[g, k]*StirlingS2[u, k]*k!, {k, 0, Min[g, u]}] ; T[n_, k_] := Module[{g, u}, g = Floor[n/2]; u = Ceiling[n/2]; Sum[ Sum[ Sum[ Binomial[g, i]*StirlingS2[i, h]*Binomial[u, j]*StirlingS2[j, k-h]*b[g-i, u-j], {j, k-h, u}], {i, h, g}], {h, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

The generating polynomial of row n is P[n](t)=Q[n](t,t,1), where the polynomials Q[n]=Q[n](t,s,x) are defined by Q[0]=1; Q[n]=t*dQ[n-1]/dt + x*dQ[n-1]/ds + x*dQ[n-1]/dx + t*Q[n-1] if n is odd and Q[n]=x*dQ[n-1]/dt + s*dQ[n-1]/ds + x*dQ[n-1]/dx + s*Q[n-1] if n is even.
Sum_{k=0..n} k * T(n,k) = A363434(n). - Alois P. Heinz, Jun 01 2023

A124526 Triangle, read by rows, where T(n,k) = A049020([n/2],k)*A049020([(n+1)/2],k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 1, 10, 30, 6, 25, 100, 36, 1, 75, 370, 186, 10, 225, 1369, 961, 100, 1, 780, 5587, 4960, 750, 15, 2704, 22801, 25600, 5625, 225, 1, 10556, 101774, 136960, 39000, 2325, 21, 41209, 454276, 732736, 270400, 24025, 441, 1, 178031, 2199262, 4110512, 1849120, 217000, 6027, 28, 769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1, 3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Comments

Row n has 1+floor(n/2) terms.
T(n,0) = A124419(n).
A124418(n,k) = k!*T(n,k) (conjecture).
A000110(n) = Sum_{k=0..[n/2]} k!*T(n,k), where A000110 is the Bell numbers.
Inspired by triangle A124418 and the work of Emeric Deutsch.

Examples

			Triangle begins:
1;
1;
1, 1;
2, 3;
4, 9, 1;
10, 30, 6;
25, 100, 36, 1;
75, 370, 186, 10;
225, 1369, 961, 100, 1;
780, 5587, 4960, 750, 15;
2704, 22801, 25600, 5625, 225, 1;
10556, 101774, 136960, 39000, 2325, 21;
41209, 454276, 732736, 270400, 24025, 441, 1;
178031, 2199262, 4110512, 1849120, 217000, 6027, 28;
769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1;
3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36; ...
		

Crossrefs

Programs

  • Mathematica
    S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}];
    T[n_, k_] := S[Floor[n/2], k] S[Floor[(n+1)/2], k];
    Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    {T(n,k) = (n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k)}
    for(n=0,15, for(k=0,n\2, print1(T(n,k),", "));print(""))

Formula

T(n,k) = A049020([n/2],k) * A049020([(n+1)/2],k), where A049020(n,k) = Sum_{i=0..n} S2(n,i) * C(i,k) and S2(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*C(k,j)*j^n (the Stirling numbers of 2nd kind).

A124529 a(n) = Sum_{k=0..n} k!*A124526(n+k,k) for n>=0.

Original entry on oeis.org

1, 2, 6, 29, 190, 1562, 15457, 179034, 2377092, 35599701, 593731310, 10914169312, 219252994039, 4779086510108, 112341582757512, 2833025331800643, 76293601822430388, 2185288262904326236, 66338823231846583471
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Comments

Equals diagonal sums of triangle A124418: a(n) = Sum_{k=0..n} A124418(n+k,k) for n>=0 (conjecture).

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,k!*((n+k)\2)!*((n+k+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k)\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k+1)\2),k))}

A362495 Total number of blocks containing at least one odd element and at least one even element in all partitions of [n].

Original entry on oeis.org

0, 0, 1, 3, 13, 54, 262, 1294, 7109, 40367, 248651, 1587414, 10827740, 76494630, 571499993, 4414720825, 35798107309, 299547765240, 2616358573834, 23536296521084, 220030456297349, 2114721297588097, 21046291460160803, 214984439282684504, 2267305399918683232
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2023

Keywords

Examples

			a(3) = 3 = 1 + 1 + 0 + 1 + 0 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y, m) option remember; `if`(n=0, m,
          `if`(x+m>0, b(n-1, y, x, m)*(x+m), 0)+b(n-1, y, x+1, m)+
          `if`(y>0, b(n-1, y-1, x, m+1)*y, 0))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..25);

Formula

a(n) = Sum_{k=0..floor(n/2)} k * A124418(n,k).
a(n) = A138378(n) - A363434(n) = A005493(n-1) - A363434(n) for n>=1.
Showing 1-10 of 11 results. Next