cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124526 Triangle, read by rows, where T(n,k) = A049020([n/2],k)*A049020([(n+1)/2],k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 1, 10, 30, 6, 25, 100, 36, 1, 75, 370, 186, 10, 225, 1369, 961, 100, 1, 780, 5587, 4960, 750, 15, 2704, 22801, 25600, 5625, 225, 1, 10556, 101774, 136960, 39000, 2325, 21, 41209, 454276, 732736, 270400, 24025, 441, 1, 178031, 2199262, 4110512, 1849120, 217000, 6027, 28, 769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1, 3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Comments

Row n has 1+floor(n/2) terms.
T(n,0) = A124419(n).
A124418(n,k) = k!*T(n,k) (conjecture).
A000110(n) = Sum_{k=0..[n/2]} k!*T(n,k), where A000110 is the Bell numbers.
Inspired by triangle A124418 and the work of Emeric Deutsch.

Examples

			Triangle begins:
1;
1;
1, 1;
2, 3;
4, 9, 1;
10, 30, 6;
25, 100, 36, 1;
75, 370, 186, 10;
225, 1369, 961, 100, 1;
780, 5587, 4960, 750, 15;
2704, 22801, 25600, 5625, 225, 1;
10556, 101774, 136960, 39000, 2325, 21;
41209, 454276, 732736, 270400, 24025, 441, 1;
178031, 2199262, 4110512, 1849120, 217000, 6027, 28;
769129, 10647169, 23059204, 12645136, 1960000, 82369, 784, 1;
3630780, 55493841, 136074274, 87570056, 16787400, 944230, 13720, 36; ...
		

Crossrefs

Programs

  • Mathematica
    S[n_, k_] = Sum[StirlingS2[n, i] Binomial[i, k], {i, 0, n}];
    T[n_, k_] := S[Floor[n/2], k] S[Floor[(n+1)/2], k];
    Table[T[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    {T(n,k) = (n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k)}
    for(n=0,15, for(k=0,n\2, print1(T(n,k),", "));print(""))

Formula

T(n,k) = A049020([n/2],k) * A049020([(n+1)/2],k), where A049020(n,k) = Sum_{i=0..n} S2(n,i) * C(i,k) and S2(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*C(k,j)*j^n (the Stirling numbers of 2nd kind).

A124528 a(n) = Sum_{k=0..n} 2^k*A124526(n,k) for n>=0.

Original entry on oeis.org

1, 1, 3, 8, 26, 94, 377, 1639, 7623, 38034, 199338, 1111816, 6442481, 39478219, 249507483, 1659172454, 11321526022, 80944313164, 591617080305, 4514822914133, 35120998653271, 284407875530728, 2342407874087454
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n\2,2^k*(n\2)!*((n+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+1)\2),k))}

A124529 a(n) = Sum_{k=0..n} k!*A124526(n+k,k) for n>=0.

Original entry on oeis.org

1, 2, 6, 29, 190, 1562, 15457, 179034, 2377092, 35599701, 593731310, 10914169312, 219252994039, 4779086510108, 112341582757512, 2833025331800643, 76293601822430388, 2185288262904326236, 66338823231846583471
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2006

Keywords

Comments

Equals diagonal sums of triangle A124418: a(n) = Sum_{k=0..n} A124418(n+k,k) for n>=0 (conjecture).

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,k!*((n+k)\2)!*((n+k+1)\2)!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k)\2),k) *polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),(n+k+1)\2),k))}
Showing 1-3 of 3 results.