cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A124564 Row 4 of table A124560; also, the self-convolution 4th power equals A124554, which is row 4 of table A124550.

Original entry on oeis.org

1, 1, 5, 35, 317, 3634, 52199, 928608, 20282765, 543008771, 17866390922, 725141498506, 36439677332431, 2274854774699772, 176901777097180896, 17172973623970540220, 2084722855480792814909, 316912193519759976734613
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124563, A124565, A124566.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{4k}(y)]^(4k), where R_n(x) is the g.f. of row n in table A124560.

A124550 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0, with R_0(y)=1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 7, 5, 0, 1, 4, 15, 30, 16, 0, 1, 5, 26, 91, 159, 66, 0, 1, 6, 40, 204, 666, 1056, 348, 0, 1, 7, 57, 385, 1899, 5955, 8812, 2321, 0, 1, 8, 77, 650, 4345, 21180, 65794, 92062, 19437, 0, 1, 9, 100, 1015, 8616, 57876, 287568, 901881
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

Antidiagonal sums equal row 1 (A124551).

Examples

			The g.f. of row n, R_n(y), simultaneously satisfies:
R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n
more explicitly,
R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,
R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,
R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,
R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,
R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,
etc., for all rows.
Table begins:
1,0,0,0,0,0,0,0,0,0,...
1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...
1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...
1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...
1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...
1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...
1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...
1,8,100,1496,25706,506376,11637540,319211576,10629219251,...
1,9,126,2109,40374,880326,22228296,665618589,24097683942,...
1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...
1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...
1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...
1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...
1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...
1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...
1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...
1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...
1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...
1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...
1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...
1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..
1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..
1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..
1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..
		

Crossrefs

Programs

  • PARI
    {T(n,k)=if(k==0,1,if(n==0,0,if(k==1,n,if(n<=k, Vec(( 1+x*Ser( vector(k,j,sum(i=0,j-1,T(n+i*n,j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1,j,T(j-1,k))),x,x/(1+x))/(1+x))),vector(n-k+1)) ),x,x/(1-x))/(1-x +x*O(x^(n))))[n]))))}

Formula

Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.

A124551 Row 1 of tables A124550 and A124560; also equals the antidiagonal sums of table A124550.

Original entry on oeis.org

1, 1, 2, 5, 16, 66, 348, 2321, 19437, 203554, 2661035, 43399794, 883165898, 22436796424, 712153021345, 28264751131084, 1403965520612428, 87352867349503436, 6813355443494722779, 666712967112785700169
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = Sum_{k>=0} y^k * R_{k}(y), where R_n(x) is the g.f. of row n in table A124550.

A124552 Row 2 of table A124550; also equals the self-convolution square of A124562, which is row 2 of table A124560.

Original entry on oeis.org

1, 2, 7, 30, 159, 1056, 8812, 92062, 1200415, 19512990, 395379699, 9991017068, 315094522052, 12413464676162, 611490149713956, 37699912801819870, 2911578809929672737, 281916836769424155940, 34249052273023310929439
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = [ Sum_{k>=0} y^k * R_{2k}(y) ]^2, where R_n(x) is the g.f. of row n in table A124550.

A124555 Row 5 of table A124550; also equals the self-convolution 5th power of A124565, which is row 5 of table A124560.

Original entry on oeis.org

1, 5, 40, 385, 4345, 57876, 926340, 18088835, 434349525, 12879458545, 473368667181, 21628231535280, 1231043822730950, 87448787189791250, 7764880712865963895, 862911010853538242176, 120154448960730327164325
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = [ Sum_{k>=0} y^k * R_{5k}(y) ]^5, where R_n(x) is the g.f. of row n in table A124550.

A124556 Row 6 of table A124550; also equals the self-convolution 6th power of A124566, which is row 6 of table A124560.

Original entry on oeis.org

1, 6, 57, 650, 8616, 133212, 2447115, 54419202, 1481595429, 49675372516, 2060520991653, 106132616602416, 6805336245809868, 544338689393810406, 54409320120862446624, 6805431454912335217590, 1066433786673596566035777
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = [ Sum_{k>=0} y^k * R_{6k}(y) ]^6, where R_n(x) is the g.f. of row n in table A124550.

A124553 Row 3 of table A124550; also equals the self-convolution cube of A124563, which is row 3 of table A124560.

Original entry on oeis.org

1, 3, 15, 91, 666, 5955, 65794, 901881, 15346419, 324465907, 8535776700, 279761994750, 11438401220798, 584130591952902, 37300812251856828, 2981666324471342976, 298639111371493692105, 37510558656296021069859
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = [ Sum_{k>=0} y^k * R_{3k}(y) ]^3, where R_n(x) is the g.f. of row n in table A124550.

A124557 Main diagonal of table A124550.

Original entry on oeis.org

1, 1, 7, 91, 1899, 57876, 2447115, 139777303, 10629219251, 1066463205220, 140409644914798, 24185696469330452, 5439617764120907676, 1594552369099740836202, 608364562372792302094447
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

A124558 Secondary diagonal of table A124550; a(n) = A124550(n+1,n).

Original entry on oeis.org

1, 2, 15, 204, 4345, 133212, 5621371, 319211576, 24097683942, 2399637270890, 313606810455697, 53638534570897308, 11984755429488415041, 3491974842611221434342, 1324861497596788043284935
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

a(n) is divisible by (n+1): A124559(n) = a(n)/(n+1).

A124559 Derived from secondary diagonal of table A124550; a(n) = A124550(n+1,n)/(n+1).

Original entry on oeis.org

1, 1, 5, 51, 869, 22202, 803053, 39901447, 2677520438, 239963727089, 28509710041427, 4469877880908109, 921904263806801157, 249426774472230102453, 88324099839785869552329
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

a(n) = (n+1)*A124558(n).
Showing 1-10 of 10 results.