cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A124554 Row 4 of table A124550; also equals the self-convolution 4th power of A124564, which is row 4 of table A124560.

Original entry on oeis.org

1, 4, 26, 204, 1899, 21180, 287568, 4802716, 99084889, 2531896840, 80346294380, 3173108251044, 156222183969181, 9603287701405136, 738066706464107408, 71003673625149131020, 8559188942710590217013, 1294012524894298022238700
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124550, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0.

Crossrefs

Formula

G.f.: A(x) = [ Sum_{k>=0} y^k * R_{4k}(y) ]^4, where R_n(x) is the g.f. of row n in table A124550.

A124560 Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0, with R_0(y)=1/(1-y).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 16, 1, 1, 1, 5, 22, 63, 66, 1, 1, 1, 6, 35, 158, 429, 348, 1, 1, 1, 7, 51, 317, 1455, 3716, 2321, 1, 1, 1, 8, 70, 556, 3634, 16918, 40272, 19437, 1, 1, 1, 9, 92, 891, 7581, 52199, 244644, 541655, 203554, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Examples

			The g.f. of row n, R_n(y), simultaneously satisfies:
R_n(y) = 1 + y*R_{n}(y)^n + y^2*R_{2n}(y)^(2n) + y^3*R_{3n}(y)^(3n) +...
more explicitly,
R_0 = 1 + y + y^2 + y^3 +... = 1/(1-y),
R_1 = 1 + y*(R_1)^1 + y^2*(R_2)^2 + y^3*(R_3)^3 + y^4*(R_4)^4 +...,
R_2 = 1 + y*(R_2)^2 + y^2*(R_4)^4 + y^3*(R_6)^6 + y^4*(R_8)^8 +...,
R_3 = 1 + y*(R_3)^3 + y^2*(R_6)^6 + y^3*(R_9)^9 + y^4*(R_12)^12 +...,
R_4 = 1 + y*(R_4)^4 + y^2*(R_8)^8 + y^3*(R_12)^12 + y^4*(R_16)^16 +...,
etc., for all rows.
Table begins:
1,1,1,1,1,1,1,1,1,1,...
1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
1,1,3,12,63,429,3716,40272,541655,9022405,186233087,4771577072,...
1,1,4,22,158,1455,16918,244644,4361883,95746603,2592416878,...
1,1,5,35,317,3634,52199,928608,20282765,543008771,17866390922,...
1,1,6,51,556,7581,128532,2689248,68880819,2155007000,82603481941,...
1,1,7,70,891,14036,272914,6525900,190604859,6781448755,...
1,1,8,92,1338,23864,521662,13975298,456468525,18121964864,...
1,1,9,117,1913,38055,921709,27263527,981599065,42880525630,...
1,1,10,145,2632,57724,1531900,49474783,1941904513,92344174075,...
1,1,11,176,3511,84111,2424288,84736940,3594121407,184465174294,...
1,1,12,210,4566,118581,3685430,138423924,6299505191,346530455866,...
1,1,13,247,5813,162624,5417683,217374894,10551425445,618507018238,...
1,1,14,287,7268,217855,7740500,330130230,17007128087,1057156741967,...
1,1,15,330,8947,286014,10791726,487184328,26523926691,1741018836674,...
1,1,16,376,10866,368966,14728894,701255202,40200085065,2776362938533,..
1,1,17,425,13041,468701,19730521,987570893,59420653233,4304220653087,..
		

Crossrefs

Rows: A124551, A124562, A124563, A124564, A124565, A124566; diagonals: A124567, A124568, A124569; A124561 (antidiagonal sums); variants: A124550, A124460, A124530, A124540.

Programs

  • PARI
    {A124550(n,k)=if(k==0,1,if(n==0,0,if(k==1,n,if(n<=k, Vec(( 1+x*Ser( vector(k,j,sum(i=0,j-1,A124550(n+i*n,j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1,j,A124550(j-1,k))),x,x/(1+x))/(1+x))),vector(n-k+1)) ),x,x/(1-x))/(1-x +x*O(x^(n))))[n]))))} /* Determined Elements from A124550: */ {T(n,k)=if(n==0|k==0,1,Vec((Ser(vector(k+1,j,A124550(n,j-1)))+x*O(x^k))^(1/n))[k+1])}

Formula

Let F_n(y) be the g.f. of row n in table A124550, then F_n(y) = R_n(y)^n and thus R_n(y) = Sum_{k>=0} y^k * F_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.

A124562 Row 2 of table A124560; also, the self-convolution square equals A124552, which is row 2 of table A124550.

Original entry on oeis.org

1, 1, 3, 12, 63, 429, 3716, 40272, 541655, 9022405, 186233087, 4771577072, 152050410552, 6037181967007, 299176055730253, 18530408350215038, 1436276193993882859, 139462485162718679221, 16980510121067921518710
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124563, A124564, A124565, A124566.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{2k}(y)]^(2k), where R_n(x) is the g.f. of row n in table A124560.

A124563 Row 3 of table A124560; also, the self-convolution cube equals A124553, which is row 3 of table A124550.

Original entry on oeis.org

1, 1, 4, 22, 158, 1455, 16918, 244644, 4361883, 95746603, 2592416878, 86825876398, 3607980811184, 186517056299848, 12022039151786966, 967930783674722085, 97490785254375447744, 12299113367136495834881, 1945525636812103772634604
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124564, A124565, A124566.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{3k}(y)]^(3k), where R_n(x) is the g.f. of row n in table A124560.

A124565 Row 5 of table A124560; also, the self-convolution 5th power equals A124555, which is row 5 of table A124550.

Original entry on oeis.org

1, 1, 6, 51, 556, 7581, 128532, 2689248, 68880819, 2155007000, 82603481941, 3896490943878, 227153148813546, 16429403864272555, 1478934508425795630, 166091860417795409081, 23316582876166010185959
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124563, A124564, A124566.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{5k}(y)]^(5k), where R_n(x) is the g.f. of row n in table A124560.

A124566 Row 6 of table A124560; also, the self-convolution 6th power equals A124556, which is row 6 of table A124550.

Original entry on oeis.org

1, 1, 7, 70, 891, 14036, 272914, 6525900, 190604859, 6781448755, 294798563020, 15737487680990, 1036588563202854, 84606134756948277, 8587502188940359207, 1086820294948914428468, 171866738763640156327659
Offset: 0

Views

Author

Paul D. Hanna, Nov 07 2006

Keywords

Comments

In table A124560, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * [R_{n*k}(y)]^(n*k) for n>=0.

Crossrefs

Cf. A124560 (table); other rows: A124551, A124562, A124563, A124564, A124565.

Formula

G.f.: A(x) = Sum_{k>=0} y^k * [R_{6k}(y)]^(6k), where R_n(x) is the g.f. of row n in table A124560.
Showing 1-6 of 6 results.