cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124644 Triangle read by rows. T(n, k) = binomial(n, k) * CatalanNumber(n - k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 14, 20, 12, 4, 1, 42, 70, 50, 20, 5, 1, 132, 252, 210, 100, 30, 6, 1, 429, 924, 882, 490, 175, 42, 7, 1, 1430, 3432, 3696, 2352, 980, 280, 56, 8, 1, 4862, 12870, 15444, 11088, 5292, 1764, 420, 72, 9, 1, 16796, 48620, 64350, 51480, 27720
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Comments

Equal to A091867*A007318. - Philippe Deléham, Dec 12 2009
Exponential Riordan array [exp(2x)*(Bessel_I(0,2x)-Bessel_I(1,2x)),x]. - Paul Barry, Mar 03 2011
From Tom Copeland, Nov 04 2014: (Start)
O.g.f: G(x,t) = C[Pinv(x,t)] = {1 - sqrt[1 - 4 *x /(1-x*t)]}/2 where C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108 with inverse Cinv(x) = x*(1-x), and Pinv(x,t)= -P(-x,t) = x/(1-t*x) with inverse P(x,t) = 1/(1+t*x). This puts this array in a family of arrays formed from the composition of C and P and their inverses. -G(-x,t) is the comp. inverse of the o.g.f. of A030528.
This is an Appell sequence with lowering operator d/dt p(n,t) = n*p(n-1,t) and (p(.,t)+a)^n = p(n,t+a). The e.g.f. has the form e^(x*t)/w(t) where 1/w(t) is the e.g.f. of the first column, which is the Catalan sequence A000108. (End)

Examples

			From _Paul Barry_, Jan 28 2009: (Start)
Triangle begins
   1,
   1,  1,
   2,  2,  1,
   5,  6,  3,  1,
  14, 20, 12,  4,  1,
  42, 70, 50, 20,  5,  1 (End)
		

Crossrefs

Cf. A098474 (mirror image), A000108, A091867, A030528, A104597.
Row sums give A007317(n+1).

Programs

  • Maple
    m:=n->binomial(2*n, n)/(n+1): T:=proc(n, k) if k<=n then binomial(n, k)*m(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od;
  • Mathematica
    Table[Binomial[n, #] Binomial[2 #, #]/(# + 1) &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[Abs[(-1)^k*CatalanNumber[#] Pochhammer[-n, #]/#!] &[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Sage
    def A124644(n,k):
        return (-1)^(n-k)*catalan_number(n-k)*rising_factorial(-n,n-k)/factorial(n-k)
    for n in range(7): [A124644(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015

Formula

T(n,k) = [x^(n-k)]F(-n,n-k+1;1;-1-x). - Paul Barry, Sep 05 2008
G.f.: 1/(1-xy-x/(1-x/(1-xy-x/(1-x/(1-xy-x/(1-x.... (continued fraction). - Paul Barry, Jan 06 2009
G.f.: 1/(1-x-xy-x^2/(1-2x-xy-x^2/(1-2x-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
T(n,k) = Sum_{i = 0..n} C(n,i)*(-1)^(n-i)*Sum{j = 0..i} C(j,k)*C(i,j)*A000108(i-j). - Paul Barry, Aug 03 2009
Sum_{k = 0..n} T(n,k)*x^k = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. T(n,k)= A007318(n,k)*A000108(n-k). - Philippe Deléham, Dec 12 2009
E.g.f.: exp(2*x + x*y)*(Bessel_I(0,2*x) - Bessel_I(1,2*x)). - Paul Barry, Mar 10 2010
From Tom Copeland, Nov 08 2014: (Start)
O.g.f.: G(x,t) = C[P(x,t)] = [1 - sqrt(1-4*x / (1-t*x))] / 2 = Sum_{n >= 1} (C. + t)^(n-1) * x^n] = x + (1 + t) x^2 + (2 + 2t + t^2) x^3 + ... umbrally, where (C.)^n = C_n = (1,1,2,5,8,...) = A000108(x), C(x)= x*A000108(x)= G(x,0), and P(x,t) = x/(1 + t*x), a special linear fractional (Mobius) transformation. P(x,-t)= -P(-x,t) is the inverse of P(x,t).
Inverse o.g.f.: Ginv(x,t) = P[Cinv(x),-t] = x*(1-x) / [1 - t*x(1-x)] = -A030528(-x,t), where Cinv(x) = x*(1-x) is the inverse of C(x).
G(x,t) = x*A091867(x,t+1), and Ginv(x,t) = x*A104597(x,-(t+1)). (End)
T(n, k) = (-1)^(n-k)*Catalan(n-k)*Pochhammer(-n,n-k)/(n-k)!. - Peter Luschny, Feb 05 2015
Recurrence: T(n, 0) = Catalan(n) = 1/(n+1)*binomial(2*n, n) and, for 1 <= k <= n, T(n, k) = (n/k) * T(n-1, k-1). - Peter Bala, Feb 04 2024

Extensions

Name brought in line with the Maple program by Peter Luschny, Jun 21 2023