cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124720 Number of ternary Lyndon words of length n with exactly two 1's.

Original entry on oeis.org

2, 5, 16, 38, 96, 220, 512, 1144, 2560, 5616, 12288, 26592, 57344, 122816, 262144, 556928, 1179648, 2490112, 5242880, 11009536, 23068672, 48233472, 100663296, 209713152, 436207616, 905965568, 1879048192, 3892305920, 8053063680, 16642981888, 34359738368
Offset: 3

Views

Author

Mike Zabrocki, Nov 05 2006

Keywords

Comments

If the offsets are modified, A124720 to A124723 are the 2nd to 5th Witt transform of A000079 [Moree]. - R. J. Mathar, Nov 08 2008
a(n+2) is the number of distinct unordered pairs of binary words having a total length of n letters: a(2+2) = 5 because we have the unordered pairs: (e,00),(e,01), (e,10), (e,11), (0,1) where e represents the empty word. Each pair has a total of 2 letters and the two elements of each pair are distinct words. - Geoffrey Critzer, Feb 28 2013

Examples

			a(4) = 5 because 1122, 1123, 1132, 1213, 1133 are all Lyndon words on 3 letters with 2 ones.
		

Crossrefs

Programs

  • Mathematica
    nn=30;Drop[CoefficientList[Series[(1/(1-2x)^2-1/(1-2x^2))/2,{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 28 2013 *)
  • PARI
    Vec(x^3*(2-3*x)/((1-2*x)^2*(1-2*x^2)) + O(x^40)) \\ Colin Barker, Oct 28 2016

Formula

G.f.: x^3*(2-3 x)/((1-2 x^2)(1- 2x)^2) = (x^2/(1-2x)^2 - x^2/(1-2*x^2))/2.
From Colin Barker, Oct 28 2016: (Start)
a(n) = 2^(n-3)*(n-1)-2^(n/2-2) for n even.
a(n) = 2^(n-3)*n-2^(n-3) for n odd.
a(n) = 4*a(n-1)-2*a(n-2)-8*a(n-3)+8*a(n-4) for n>6.
(End)