A124725 Triangle read by rows: T(n,k) = binomial(n,k) + binomial(n,k+2) (0 <= k <= n).
1, 1, 1, 2, 2, 1, 4, 4, 3, 1, 7, 8, 7, 4, 1, 11, 15, 15, 11, 5, 1, 16, 26, 30, 26, 16, 6, 1, 22, 42, 56, 56, 42, 22, 7, 1, 29, 64, 98, 112, 98, 64, 29, 8, 1, 37, 93, 162, 210, 210, 162, 93, 37, 9, 1, 46, 130, 255, 372, 420, 372, 255, 130, 46, 10, 1, 56, 176, 385, 627, 792, 792, 627
Offset: 0
Examples
Row 3 = (4, 4, 3, 1), then row 4 = (7, 8, 7, 4, 1). First few rows of the triangle are 1; 1, 1; 2, 2, 1; 4, 4, 3, 1; 7, 8, 7, 4, 1; 11, 15, 15, 11, 5, 1; 16, 26, 30, 26, 16, 6, 1; ... From _Paul Barry_, Apr 08 2011: (Start) Production matrix begins 1, 1; 1, 1, 1; 0, 0, 1, 1; -1, 0, 0, 1, 1; 0, 0, 0, 0, 1, 1; 1, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 1, 1; -1, 0, 0, 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 1, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1; (End)
Programs
-
Maple
T:=(n,k)->binomial(n,k)+binomial(n,k+2): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
Flatten[Table[Binomial[n,k]+Binomial[n,k+2],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 12 2015 *)
Formula
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1) + T(n-3,k) + T(n-3,k-1), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Feb 12 2014
Extensions
Edited by N. J. A. Sloane, Nov 29 2006
Comments