A124752
Inverse of number triangle A124749.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 3, 3, 3, 3, 2, 1, 0, 0, 0, 4, 4, 4, 4, 3, 2, 1, 0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
Offset: 0
Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 0, 1,
0, 0, 0, 1, 1,
0, 0, 0, 1, 1, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 2, 2, 2, 2, 1,
0, 0, 0, 3, 3, 3, 3, 2, 1,
0, 0, 0, 4, 4, 4, 4, 3, 2, 1,
0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
A124750
Expansion of (1 + x + x^2)/(1 - x^3 + x^4).
Original entry on oeis.org
1, 1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 1, 0, -1, 2, -1, -1, 3, -3, 0, 4, -6, 3, 4, -10, 9, 1, -14, 19, -8, -15, 33, -27, -7, 48, -60, 20, 55, -108, 80, 35, -163, 188, -45, -198, 351, -233, -153, 549, -584, 80, 702, -1133, 664, 622, -1835, 1797, -42, -2457, 3632, -1839
Offset: 0
-
A[n_] := Array[Sum[KroneckerDelta[#1, #2 - j], {j, 0, n}] + KroneckerDelta[#1, #2 + 3] &, {n, n}]; Table[(-1)^(r + 1)*Total[CoefficientList[CharacteristicPolynomial[A[r - 3], x], x]], {r, 4, 60}] (* John M. Campbell, Mar 10 2012 *)
CoefficientList[Series[(1+x+x^2)/(1-x^3+x^4),{x,0,70}],x] (* or *) LinearRecurrence[{0,0,1,-1},{1,1,1,1},70] (* Harvey P. Dale, Jun 06 2018 *)
A124751
Expansion of (1+x^2+x^4)/(1-x^6+x^7).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 2, -2, 2, -2, 2, -3, 4, -4, 4, -4, 4, -5, 7, -8, 8, -8, 8, -9, 12, -15, 16, -16, 16, -17, 21, -27, 31, -32, 32, -33, 38, -48, 58, -63, 64, -65, 71, -86, 106, -121, 127, -129, 136, -157, 192, -227, 248
Offset: 0
-
CoefficientList[Series[(1+x^2+x^4)/(1-x^6+x^7),{x,0,100}],x] (* or *) LinearRecurrence[{0,0,0,0,0,1,-1},{1,0,1,0,1,0,1},100] (* Harvey P. Dale, Mar 10 2017 *)
Showing 1-3 of 3 results.
Comments