cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A124752 Inverse of number triangle A124749.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, 3, 3, 3, 3, 2, 1, 0, 0, 0, 4, 4, 4, 4, 3, 2, 1, 0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums (and fourth column) are A124753.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 0, 0, 1,
0, 0, 0, 1, 1,
0, 0, 0, 1, 1, 1,
0, 0, 0, 1, 1, 1, 1,
0, 0, 0, 2, 2, 2, 2, 1,
0, 0, 0, 3, 3, 3, 3, 2, 1,
0, 0, 0, 4, 4, 4, 4, 3, 2, 1,
0, 0, 0, 9, 9, 9, 9, 7, 5, 3, 1
		

Crossrefs

Cf. A124747.

A124750 Expansion of (1 + x + x^2)/(1 - x^3 + x^4).

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 1, 0, -1, 2, -1, -1, 3, -3, 0, 4, -6, 3, 4, -10, 9, 1, -14, 19, -8, -15, 33, -27, -7, 48, -60, 20, 55, -108, 80, 35, -163, 188, -45, -198, 351, -233, -153, 549, -584, 80, 702, -1133, 664, 622, -1835, 1797, -42, -2457, 3632, -1839
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums of number triangle A124749.
Let A(n) denote the n X n matrix with 1's along and everywhere above the main diagonal, 1's along the sub-sub-subdiagonal, and 0's everywhere else; for n>3, a(n) equals (-1)^(n+1) times the sum of the coefficients of the characteristic polynomial of A(n-3) (see Mathematica code below). - John M. Campbell, Mar 10 2012

Crossrefs

Cf. A124749.

Programs

  • Mathematica
    A[n_] := Array[Sum[KroneckerDelta[#1, #2 - j], {j, 0, n}] + KroneckerDelta[#1, #2 + 3] &, {n, n}]; Table[(-1)^(r + 1)*Total[CoefficientList[CharacteristicPolynomial[A[r - 3], x],  x]], {r, 4, 60}] (* John M. Campbell, Mar 10 2012 *)
    CoefficientList[Series[(1+x+x^2)/(1-x^3+x^4),{x,0,70}],x] (* or *) LinearRecurrence[{0,0,1,-1},{1,1,1,1},70] (* Harvey P. Dale, Jun 06 2018 *)

Formula

G.f.: (1 + x + x^2)/(1 - x^3 + x^4).
a(n) = Sum_{k=0..n} binomial(floor(k/3), n-k) * (-1)^(n-k).
a(n) = a(n-3) - a(n-4). - Wesley Ivan Hurt, May 02 2021

A124751 Expansion of (1+x^2+x^4)/(1-x^6+x^7).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, -1, 1, -1, 1, -1, 1, -2, 2, -2, 2, -2, 2, -3, 4, -4, 4, -4, 4, -5, 7, -8, 8, -8, 8, -9, 12, -15, 16, -16, 16, -17, 21, -27, 31, -32, 32, -33, 38, -48, 58, -63, 64, -65, 71, -86, 106, -121, 127, -129, 136, -157, 192, -227, 248
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Diagonal sums of number triangle A124749.

Programs

  • Mathematica
    CoefficientList[Series[(1+x^2+x^4)/(1-x^6+x^7),{x,0,100}],x] (* or *) LinearRecurrence[{0,0,0,0,0,1,-1},{1,0,1,0,1,0,1},100] (* Harvey P. Dale, Mar 10 2017 *)

Formula

a(n)=sum{k=0..floor(n/2), C(floor(k/3),n-2k)*(-1)^n}
Showing 1-3 of 3 results.